
D
u

n
n

n
atu

ral Lan
g

u
ag

e P
ro

cessin
g

 fo
r C

o
rp

u
s Lin

g
u

istics

Corpus analysis can be expanded and scaled up by
incorporating computational methods from natural language
processing. This Element shows how text classification and text
similarity models can extend our ability to undertake corpus
linguistics across very large corpora. These computational
methods are becoming increasingly important as corpora
grow too large for more traditional types of linguistic analysis.
We draw on five case studies to show how and why to use
computational methods, ranging from usage-based grammar
to authorship analysis to using social media for corpus-based
sociolinguistics. Each section is accompanied by an interactive
code notebook that shows how to implement the analysis in
Python. A stand-alone Python package is also available to help
readers use these methods with their own data. Because large-
scale analysis introduces new ethical problems, this Element
pairs each new methodology with a discussion of potential
ethical implications.

About the Series
Corpus Linguistics has grown to become
part of the mainstream of Linguistics and
Applied Linguistics. This Elements series
is designed to meet the needs of students
and researchers who need to keep up with
this changing field, including introductions
to main topics areas as well as accounts
of the latest ideas and developments.

Series Editor
Susan Hunston
University of
Birmingham

Corpus Linguistics

ISSN 2632-8097 (online)
ISSN 2632-8089 (print)

natural Language
Processing for
Corpus Linguistics

Jonathan Dunn

Cover image: monsitj / iStock / Getty Images Plus
of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Elements in Corpus Linguistics
edited by

Susan Hunston
University of Birmingham

NATURAL LANGUAGE
PROCESSING FOR CORPUS

LINGUISTICS

Jonathan Dunn
University of Canterbury

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre,

New Delhi – 110025, India
103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.
It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781009074438

DOI: 10.1017/9781009070447
© Jonathan Dunn 2022

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.
First published 2022

A catalogue record for this publication is available from the British Library.

ISBN 978-1-009-07443-8 Paperback
ISSN 2632-8097 (online)
ISSN 2632-8089 (print)

Additional resources for this publication at www.cambridge.org/dunnresources
Cambridge University Press has no responsibility for the persistence or accuracy of
URLs for external or third-party internet websites referred to in this publication
and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

http://www.cambridge.org
http://www.cambridge.org/9781009074438
http://dx.doi.org/10.1017/9781009070447
www.cambridge.org/dunnresources
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics

Elements in Corpus Linguistics

DOI: 10.1017/9781009070447
First published online: March 2022

Jonathan Dunn
University of Canterbury

Author for correspondence: Jonathan Dunn,
jonathan.dunn@canterbury.ac.nz

Abstract: Corpus analysis can be expanded and scaled up by
incorporating computational methods from natural language processing.
This Element shows how text classification and text similarity models can
extend our ability to undertake corpus linguistics across very large corpora.
These computational methods are becoming increasingly important as

corpora grow too large for more traditional types of linguistic analysis. We
draw on five case studies to show how and why to use computational
methods, ranging from usage-based grammar to authorship analysis to
using social media for corpus-based sociolinguistics. Each section is
accompanied by an interactive code notebook that shows how to

implement the analysis in Python. A stand-alone Python package is also
available to help readers use these methods with their own data. Because
large-scale analysis introduces new ethical problems, this Element pairs

each new methodology with a discussion of potential ethical implications.

This Element also has a video abstract: www.cambridge.org/dunnabstract
Keywords: computational linguistics, natural language processing, corpus

linguistics, text classification, text similarity, usage-based grammar,
corpus-based sociolinguistics, computational stylistics, computational syntax

JEL classifications: A12, B34, C56, D78, E90

© Jonathan Dunn 2022
ISBNs: 9781009074438 (PB), 9781009070447 (OC)

ISSNs: 2632-8097 (online), 2632-8089 (print)

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

mailto:jonathan.dunn@canterbury.ac.nz
http://www.cambridge.org/dunnabstract
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Contents

1 Computational Linguistic Analysis 1

2 Text Classification 13

3 Text Similarity 39

4 Validation and Visualization 62

5 Conclusions 79

References 81

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Accessing the Code Notebooks

https://doi.org/10.24433/CO.3402613.v1
https://github.com/jonathandunn/text_analytics
https://github.com/jonathandunn/corpus_analysis

To run the notebooks through Code Ocean, you will need to click the command
that says “Edit Your Copy” in the top right-hand corner, as shown in the first
screenshot:

The “Jupyter” command will now be available under the heading “Reproduci-
ble Run” as shown in the second screenshot:

This will start up the interactive notebook container. You can now find the
notebooks within the “code” folder.

The following is a list of interactive notebooks together with the section of the
Element which they accompany:

Lab 1.2. Accessing the Corpora

Lab 1.3. Visualizing Categories

Lab 1.4. Using Groupby to Explore Categories

Lab 1.5. Vectorizing Texts

Lab 2.1. Getting x and y Arrays for Dialects

Lab 2.2. Classifying Cities with TF-IDF and PMI

Lab 2.3. Classifying Authors with Function Word N-Grams

Lab 2.4. Using Positional Vectors for Parts of Speech

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://github.com/jonathandunn/text_analytics
https://github.com/jonathandunn/corpus_analysis
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Lab 2.5. Classifying Hotels by Quality Using Sentiment Analysis

Lab 2.7. Classifying Cities Using MLPs

Lab 3.2. Register and Corpus Similarity

Lab 3.3. Finding Similar Documents

Lab 3.4. Finding Associated Words

Lab 3.5. Working with Word Embeddings

Lab 3.6. Clustering Word Embeddings

Lab 4.1. Baselines for Classifying Political Speeches

Lab 4.2. Ensuring Validity Using Cross-Validation

Lab 4.3. Unmasking Authorship

Lab 4.4. Comparing Word Embeddings

Lab 4.5. Making Maps for Linguistic Diversity

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 1

1 Computational Linguistic Analysis
1.1 Scaling Up Corpus Linguistics

Corpus linguistics has entered a golden age, driven by both the amount and the
range of language that is now available for linguistic analysis. Corpus data is
able to represent a population’s usage at scale, bypassing the limitations which
made introspection so important in the 1950s. But this wide availability of
language data requires that linguists have the methods available to analyze it.
And while there has been a surge of advances in natural language processing
and computational linguistics, these advances have become increasingly dis-
connected from corpus linguistics and linguistic theory. This Element brings
natural language processing and corpus linguistics together, showing how com-
putational models can be used to answer both categorization and comparison
problems. These computational models are presented using five case studies
that will be introduced in the next section, ranging from syntactic analysis to
register analysis to corpus-based sociolinguistics.
The goal here is to show how to use these computational models, what

linguistic questions they can answer, and why it is important to scale up corpus
linguistics in this way. A linguist can use this Element to learn how to use natu-
ral language processing to answer linguistic questions they are already familiar
with. And a computer scientist can use this Element to learn about the linguis-
tic assumptions and limitations behind computational methods, matters that are
too often disregarded within natural language processing itself.
A categorization problem is about assigning a predefined label to some piece

of language. At the word level, this could involve asking whether a particular
open-class word is a noun or a verb. At the sentence level, this could be asking
what kind of construction a particular sentence represents. At the document
level, this could be asking whether a particular speaker represents New Zealand
English or Australian English. All of these questions can be answered using a
text classifier. This is a type of supervised machine learning in which we as
linguists define the categories that we are interested in.
A comparison problem is about measuring the relationship between two

observations. At the word level, this could be asking whether two nouns like
cat and dog belong to the same semantic domain. At the sentence level,
this could be asking whether two tweets have a similar sentiment. At the
document level, this could be asking whether two articles are examples of
a similar style. These questions can be approached using a text similarity
model. This is a type of unsupervised machine learning in which we as lin-
guists only control the representations being used, not the set of labels used for
annotation.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

2 Corpus Linguistics

How well do computational models compare with human introspection? In
some cases, models can reproduce human intuitions with a high degree of
accuracy. For example, text classifiers have been shown to make very good
predictions about the part of speech of individual words when trained on
small amounts of annotated data. In a case like this, a small amount of seed
data, which is annotated by a linguist, supports the analysis of corpora too
large to be annotated by a linguist. So a text classifier allows us to scale up
introspection-based annotations.
In other cases, computational models can detect patterns in language that are

not visible to human introspection. For example, research in both authorship
analysis and dialect identification has shown that there are enough individual-
specific and community-specific variants to enable accurate predictions of who
produced a specific document. But, as linguists, our own introspections are not
precise enough to identify these same patterns. In a case like this, computational
linguistic analysis makes it possible to answer new questions about language.
Finally, there are cases where computational models completely miss some-

thing that is easily accessible to humans. For example, we will follow a case
study on multilingualism online which shows that 90 percent of digital lan-
guage data (from the web and social media) represents just twenty languages.
Most languages in the world are low-resource languages from a computational
perspective. As a result, many of the computational methods that we cover in
this Element are difficult to apply to these languages. As linguists, however,
we do not require millions or billions of words in a language before we can
begin our analysis.
We need computational linguistic analysis for two reasons: for reproduci-

bility and for scalability. First, every step in a computational pipeline is fully
automated, which means that it can be reproduced and verified. For example,
this Element follows five separate case studies that we will introduce in the
next subsection. All the graphs and figures and experiments in the Element can
be reproduced using the code notebooks that are linked within each section.1

This is an example of how computational methods support reproducibility.
Second, the once-revolutionary Brown Corpus contained 1 million words

(Francis & Kucera, 1967). But it is common now for corpora to range from
1 billion words, like the GeoWAC family of corpora (Dunn & Adams, 2020),
up to 400 billion words, like the Corpus of Global Language Use (Dunn,
2020). These very large corpora are often drawn from digital sources like the
web, social media, Wikipedia, and news articles. While these sources of lan-
guage data have tremendous potential for testing linguistic hypotheses on a

1 And at https://github.com/jonathandunn/corpus_analysis

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://github.com/jonathandunn/corpus_analysis
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 3

large scale, working with them requires computational methods to scale up the
analysis.
At the same time, the combination of large digital corpora and computational

linguistic analysis creates new ethical issues. Given that these corpora contain
data from large numbers of individuals, how do we maintain privacy? How do
we determine ownership and control over both the data and the models that are
derived from the data? How do we prevent models from perpetuating negative
stereotypes that are contained in these corpora? We will consider a range of
ethical questions like these as we cover the core computational methods.
This first section introduces the basic ideas behind both text classification

models and text similarity models. But, before we look at the models them-
selves, we start by introducing five case studies that we will be following to
show how these methods can be used for meaningful linguistic analysis.

1.2 The Case Studies
This Element uses case studies and interactive code notebooks to show you
how to apply computational methods using Python as part of a meaningful lin-
guistic analysis. This section introduces the case studies and, at the end of it,
you will find a link to a code notebook that introduces the corpora we will be
using. Every example, every result, every graph that we use is reproducible
given these code notebooks. This availability of both the code and the data is
an important part of best practices.
Corpus-Based Sociolinguistics. This case study takes a computational

approach to social variation. More precisely, we model geographic variation
using digital corpora. These examples use data from the web and social media
to model lexical and grammatical variation across different cities and countries
(Dunn, 2020). The goal is to find specific linguistic features that are in varia-
tion across different populations, as well as to evaluate the distinctiveness or
uniqueness of each set of variants. This case study is corpus-based because vari-
ants are discovered in naturally occurring corpora rather than elicited through
survey-based methods.
Corpus Stylistics. This case study takes a computational approach to

forensic linguistics. Do different authors have a predictable style? We use pub-
lished books from Project Gutenberg (Gerlach & Font-Clos, 2020) to model
how authors maintain a unique style across multiple works. What are the best
features to capture stylistic variation? How unique are specific authors? Are
these authorship models robust or do they depend on a small number of highly
predictive features? The goal of this case study is to look at individual variation
from a computational perspective.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

4 Corpus Linguistics

Usage-Based Grammar. This case study shows how computational models
can be used to analyze syntax and semantics. How can we identify which part
of speech a word belongs to? How do we find which phrases are collocations
in order to treat them as a single unit? Can we extract constructions from a
corpus? Is it possible to cluster open-class words into semantic domains by
observing their patterns of usage? These examples are drawn from the other
corpora as well as from the Universal Dependencies data (Zeman et al., 2021).
The goal is to undertake syntactic and semantic analysis while using corpus-
based observations instead of introspection.
Multilingualism Online. This case study uses computational methods to

analyze underrepresented languages in digital environments. What languages
are found online?Where are these languages being used and for what purposes?
Which languages have sufficient data and resources to enable a computational
linguistic analysis? Can we use computational methods on languages other
than English? What are the relationships between different digital registers?
In addition to language-mapping data from the earthLings.io project,2 this case
study uses data from Wikipedia,3 social media, and the web to look at register
variation across dozens of languages.
Socioeconomic Indicators. This case study provides examples of how

computational methods can be used to answer questions outside of linguis-
tics. For example, how do political and social issues change over time? These
examples use data from newspaper articles (Parsons, 2019) and congressional
speeches (Gentzkow, Shapiro, & Taddy, 2018) to examine political discourse
from 1931 to 2016. This case study further works with customer sentiment in
the text of hotel reviews (Li, 2012; McKenzie & Adams, 2018). The goal is
to augment traditional survey-based research methods by analyzing large cor-
pora. These questions are not a part of the traditional domain of linguistics.
They instead represent new practical applications of corpus analysis.
Taken together, these case studies show how to apply computational methods

to a range of problems from different areas of linguistics, using Python to under-
take the analysis. You can follow these case studies using the provided code
notebooks as well as the associated Python package text_analytics.4 For exam-
ple, you can use this package to take a closer look at implementation details
or to carry out your own analysis of your own corpora. Check out Lab 1.2 to
explore the corpora from our case studies, shown in Table 1. After opening
the lab capsule through Code Ocean, you will need to run the environment by

2 www.earthLings.io
3 www.tensorflow.org/datasets/catalog/wikipedia
4 https://github.com/jonathandunn/text_analytics

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

http://www.earthLings.io
http://www.tensorflow.org/datasets/catalog/wikipedia
https://github.com/jonathandunn/text_analytics
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 5

Table 1 List of primary corpora used for the case studies

Corpus Source Labels N. Words

Congressional Speeches, 1931–2016 Year, Party 841 million
NYT Lead Paragraphs, 1931–2016 Year 364 million
Project Gutenberg Books Author 1.04 billion
Tweets, Web Pages City or Country 836 million
Hotel Reviews Rating 353 million

following the Jupyter link. The notebooks are then contained within the code
folder.5

The remainder of this first section provides an overview of the main topics
we will cover. Section 1.3 discusses categorization problems (like part-of-
speech tagging) and Section 1.4 discusses comparison problems (like corpus
similarity). Section 1.5 introduces one of the central ideas in computational lin-
guistics, that we represent language in a high-dimensional vector space. Finally,
Section 1.6 is our first discussion of the ethical implications of computational
methods, beginning with the idea of data rights. Each of the four main sections
will have a similar structure, endingwith a discussion of the ethical implications
created by the methods we have just presented.

1.3 Categorization Problems
The first kind of model that we will cover is a text classifier, which we use to
solve categorization problems. We start this kind of analysis by deciding which
categories are important. In other words, we create a complete classification
system, in which each unit of language belongs to one or another category. For
example, if we want to apply part-of-speech tags to a corpus, we need to start
by defining all the word classes that are available.
Let’s say we want to sort tweets by language, in order to build a corpus of

social media texts. We first come up with examples of all the languages we
are interested in. Some categories might be quite large (a majority class, like
English) while others are quite small (a minority class, like Samoan).
Then we train a classifier to automate the labeling task. Labeling here means

assigning each text to the correct category. If a tweet is written in Samoan,
we want the classifier to label it as Samoan. The goal, of course, is to auto-
mate labeling so that we can analyze our categories across corpora containing

5 Lab 1.2 –> https://doi.org/10.24433/CO.3402613.v1

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

6 Corpus Linguistics

millions or billions of words. Training here means that we show the classifier
examples with their correct labels until the model is able to make accurate
predictions on its own.
Let’s break down the problem of text classification. First, we need to con-

sider the span of language that we are analyzing. In this Element we will look
at examples of classifying individual words (like parts of speech), entire docu-
ments (like news articles), and collections of documents (like different writings
from a single person).
Second, we need to design a category system. Sometimes this category

system is straightforward: for example, if we want to classify documents
according to their language or dialect, those categories are already well estab-
lished (for example, English as a language or NewZealand English as a dialect).
But there are other cases where we need to invent a new category system. Let’s
say we want to classify news articles by topic: We might start with a few high-
level topics like SPORTS or POLITICS. But after some experimentation we will
most likely find other topics that we have overlooked.
Third, we need to choose our representation to focus on a particular part of

the linguistic signal. If the goal is to classify parts of speech, then we care about
the surrounding context, especially surrounding function words. But if the goal
is to classify news articles by topic, then key terms are more important than
local syntactic contexts. And function words will not be helpful for making
predictions about the topic of a document. In this Element we introduce four
types of representation that allow us to capture different parts of the linguistic
signal.
Fourth, we need to train and then evaluate a classifier. Our basic approach

is to divide a corpus into development, training, and testing sets so that
we can evaluate the model’s output labels on samples that it has not seen.
This prediction-based evaluation is important for ensuring that the results are
valid. This is especially true when the ultimate goal is to use the predictions
themselves for further linguistic analysis.
Let’s think for a moment about the different kinds of categories that wemight

be interested in for corpus analysis. These examples come from the case studies.
Sometimes we have syntactic categories, like parts of speech: Is this word a
noun or a verb? Other times we have semantic categories, like topic: Is this
article about SPORTS or POLITICS? The sentiment of a document can be seen as
a pragmatic category: Is this review implying a good or bad experience at a
hotel? And, finally, sociolinguistic categories involve stylistics or authorship
analysis: What dialect does this document represent?
The power of a text classifier is that it allows us to undertake annotation

for very different types of linguistic analysis. But we need to make sure that

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 7

our representations of language (i.e., our features) correspond with the kind
of categories we are working with. And, just as important, we need to make
sure our category systems are coherent. Most classifiers are exhaustive and
discrete, which means that every sample needs to be a member of one and only
one category. For example, an article cannot be about both SPORTS and POLITICS

in this framework.
At its core, we as linguists define the classification problem by deciding in

advance what the categories will be. Some category systems are scientifically
valid: For example, we know that we can identify the dialect or native language
of a document’s author. But other category systems are not valid: For exam-
ple, we could not know what social clubs the author belongs to or what their
favorite food is. We must establish a good justification for the categories we
propose because the classifier will simply replicate any bias that we create in
our annotations.
Check out Lab 1.3 to visualize the category systems for some of the

categorization problems we will be working with.6

1.4 Comparison Problems
The second family of methods that we will cover is text similarity models,
which we use to solve comparison problems. The basic idea is to measure how
similar two words or two texts are, and then use that similarity to cluster them
into groups. Similarity models are not discrete like classifiers and they do not
require annotations in advance. For example, let’s say we can measure that
Charles Dickens writes more like Anthony Trollope than Ernest Hemingway
does. Then we undertake that analysis for every pair of writers in a corpus.
Now we have a network of relationships between authors that we can cluster
into groups of similar authors. The final output is similar to a text classifier
(these clusters are categories), except that we as linguists have not defined the
labels.
We need to start by thinking about the same questions we posed for design-

ing a text classifier: What span of language are we analyzing (words, sentences,
documents) and what part of the linguistic signal are we interested in? For
example, we will use similarity models to measure the association between
words using both association measures (such as Pointwise Mutual Informa-
tion) and word embeddings (such as the Skip-Grams with Negative Sampling
architecture in WORD2VEC). In this case, the question is about the similarity of
a particular word form across an entire corpus. But we will also look at models

6 Lab 1.3 –> https://doi.org/10.24433/CO.3402613.v1

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

8 Corpus Linguistics

of corpus similarity and document similarity, which work across much larger
spans.
Document similarity, for example, is a method that would allow us to sort

news articles into finer-grained categories than a text classifier would support.
And, more importantly, we as linguists would not need to predefine an exhaus-
tive set of possible topics. The challenge, of course, is that there is not always
an explicit connection between specific terms in an article (home brew) and the
topic (BEER). So our text similarity model needs to learn that there is a topic
in the background that can show up across various terms like fermenter and
siphon and yeast. You might search for an article about how to start a home
brew when you actually need to find an article about how to soak your grains.
From a linguistic perspective, this is a challenge of finding relationships within
a larger semantic domain.
Part of text similarity is the relationship between two texts or two words in

isolation. That means that we just compare selections from Dickens and Trol-
lope on their own, without considering other nineteenth-century novelists. But
sometimes we want to know the relationship between all the texts in a cor-
pus: The whole web for a search engine, or all English novels for a study of
authorship. When we do this, we need a single fixed point for comparison. For
example, we could define the location of every city in the world using its angle
and distance from Rome and its altitude. Then we use these three numbers
to represent where each city is located. Some similarity models work in just
this way: We pick a set of points in vector space and map our texts relative to
those points. In other words, if every document is represented using the same
features, using a table with the same columns, we can directly compare those
documents. Vector space is a way of thinking about high-dimensional repre-
sentations of language, an idea that we will look at more closely in the next
section. Relationships in vector space should mirror the linguistic relationships
we are interested in.
Texts can be similar to one another because they have similar structures

(syntax), similar content (semantics), similar implications or sentiment (prag-
matics), or because they represent similar authors (sociolinguistics). We all use
search engines like DuckDuckGo that work on content-based similarity. But
the idea of a comparison problem more generally is that we could also build a
search engine that includes authorship (news articles by Canadian women) or
sentiment (news articles that have a positive view of urban cycling). The point
is that if we can represent a particular part of the linguistic signal, then we can
measure similarity between different samples (where a sample can be either a
word or a document or a corpus).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 9

A similarity model can be used to cluster documents, but it can also be used
to cluster words. In addition to this, think about a document as a sample that
represents some underlying population: Corpora from New Zealand also rep-
resent users of New Zealand English. Thus, we can also use similarity models
to cluster abstract objects like dialects: What varieties of English are the most
similar, given documents from each variety? Later we will see how to work
at all three levels (words, documents, corpora). These problems are actually
related to one another: for example, we could start with word similarity to see
that home brew and beer and keg and yeast are all words that occur in a single
semantic script. Then, a model of document similarity would start out knowing
which words are related.
Text similarity models do not require us as linguists to define discrete cate-

gories in advance. On the one hand, this means it is possible for the model to
find categories that we have not considered. We might think of HOME BREW as
a topic that includes beer and yeast but forget about bottles and sanitization.
An unsupervised model is easier to get started with, because there is not the
initial work of creating a category system. On the other hand, it is much harder
in practice to get these models to work well. The basic problem is that, because
we do not tell the model what we want to get as output, we might not like the
output that we end up with. Check out Lab 1.4 to further explore the corpora
for our case studies.7

1.5 Language in Vector Space
The idea behind vector space is that we can find a representation for language in
which the relationship between vectors mirrors the linguistic relationships that
we are interested in. For example, the vector representation for nouns like cat
and dog should capture the many lexical semantic properties of those words.
The first step is to convert language into numeric representations, vectors,
before we input those vectors into either text classifiers or text similarity
models.
The way we choose to vectorize language depends on what part of the lin-

guistic signal we want to analyze. The simplest method is to represent words
using their frequency. Let’s see what this looks like, starting with the sentences
in (1) to (3).

(1) My neighbor sang a song about tulips.
(2) My neighbor sang a song about my neighbor.
(3) My neighbor sang a song about my tulips.

7 Lab 1.4 –> https://doi.org/10.24433/CO.3402613.v1

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

10 Corpus Linguistics

Our first step is to make a table, where each word is a column (up and down)
and each sentence is a row (left to right). The vocabulary looks like this when
we go in alphabetic order:

a about my neighbor sang song tulips

Now we count how many times each word occurs in each sentence. The
number in each cell thus represents the frequency of the word shown in the
column header. This means that words are columns and sentences are rows.
The first sentence has the word neighbor just one time; but the second sentence
has it twice. This gives us a frequency vector for each sentence.

a about my neighbor sang song tulips
(1) 1 1 1 1 1 1 1
(2) 1 1 2 2 1 1 0
(3) 1 1 2 1 1 1 1

This is a toy example because the vocabulary is quite small (only seven
words). For actual models we might work with 10k to 50k words. This means
that the vector has 10k to 50k dimensions or columns, because each word in
the vocabulary has its own column. The larger our corpus, the larger our vector
space becomes.
Now let’s walk through the process step by step. Take a sentence like (4),

shown in the table below. The columns are individual words and the sentence
is a row. This is called a one-hot encoding because each vocabulary item has
a fixed position in the vector. The number in each cell is again frequency.

(4) That hotel has great views of Paris.

every great has hotel in of Paris that views
(4) 0 1 1 1 0 1 1 1 1

Now let’s say we have two other sentences, in (5) and (6). These are shown
below, together with the frequency vector for (4). We notice a few things here:
First, we could measure the distance between these vectors using metrics like
Euclidean distance or cosine distance (which we will do in Sections 3.3 and
3.5). Second, small changes in the vectors actually represent large changes in
the semantics: (5) is about just one hotel but (6) is about every hotel, a much
broader scope for the statement. You will notice that this kind of representation
would not work well for capturing scope.

(5) That hotel in Paris has great views.
(6) Every hotel in Paris has great views.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 11

every great has hotel in of Paris that views
(4) 0 1 1 1 0 1 1 1 1
(5) 0 1 1 1 1 0 1 1 1
(6) 1 1 1 1 1 0 1 0 1

A full-scale model needs to transform every document in a corpus into a
shared vector space. Consider our case study of congressional speeches. The
full corpus contains 2.7 million speeches, not just a handful. That means we
will need a larger number of vocabulary features to fit each speech into the
same vector space. It turns out there are 841 million word tokens in our corpus
of speeches. As we would expect, though, most word types within the corpus
are actually quite rare. The frequency graph in Figure 1 shows the number of
occurrences for each of these unique word types in log scale.
The number of tokens for each word type drops off quite quickly. This means

that we have a lot of uncommon words, occurring in just one or two speeches.
There are just over a million word types. But only 626k word types occur at
least twice, and 414k at least three times. This graph is in log scale, so that we
can compare word frequencies across different orders of magnitude. These rare
words do not add much information about the relationship between speeches,
because they appear in so few documents. For practical reasons, we often limit
the number of words we use, choosing the top n most frequent words. Eve-
rything else is considered to be out-of-vocabulary and is either ignored or
replaced with a generic token.
Check out Lab 1.5, where we carry out this process for the entire corpus of

congressional speeches. Because each speech shares the same one-hot encoding

0.0
101 103 105 107

0.5

1.0

1.5

D
en

si
ty

Freq

2.0

2.5

Figure 1 Distribution of word frequencies in congressional speech corpus

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

12 Corpus Linguistics

(where vector position i refers to vocabulary item i), we have converted each
of the documents into the same vector space.8

1.6 Ethics: Data Rights
Computational models allow us to scale up our analysis to very large corpora.
This allows linguists to analyze an amount of data that, as individuals, we could
never hope to analyze. But it also creates some new problems. What happens
when our ability to analyze very large corpora creates unintended applications?
What happens when such data collection interferes with the privacy of indi-
viduals? If large corpora support profitable applications for corporations and
governments, who should reap the rewards?Who controls language data?Who
controls models that have been trained from language data?
Let’s imagine that there is a new application of computational linguis-

tics that derives knowledge about the world from a large corpus. And let’s
further imagine that this application is quite profitable. The basic situation
is that average people create the data that makes such technology possible.
But who benefits from that technology and who controls it? This is a rela-
tively new area for human thought, and so our thinking about the ethics of
such computational models has not caught up with the reality of how they
are created and how they are used. As we explore how to use such mod-
els, however, we need to keep in mind that the analysis of large corpora can
contribute to what has been called surveillance capitalism (Zuboff, 2019).
How can we ensure that linguistic analysis is used only for specific ethical
purposes?
A computational model only learns what we train it to learn. If the train-

ing data contains information that identifies individuals, the model inherits
this breach of privacy. Here’s a hypothetical example: Imagine we train an
authorship model to verify that a bank customer who tries to access an account
is actually the owner of that account. The bank which trains this model has
millions of customers in the USA: mostly speakers from America, Canada,
Mexico, and the UK. Other dialects, like New Zealand English, are used by
only a handful of the bank’s customers. How confident are we that the model
remains accurate for a class of customers with very few samples? The model
was trained and evaluated on distinguishing betweenmillions of members from
other classes. Do we trust that the model remains accurate for an unseen minor-
ity class? Could the model maintain information about individual members of
that minority class?

8 Lab 1.5 –> https://doi.org/10.24433/CO.3402613.v1

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 13

A model only knows what it finds in the data we train it with. So, if we train
a model using data which implies that Klingons are violent, Romulans are lazy,
Ferengi are drunks, and Vulcans are unintelligent, it is likely that the model will
learn that these negative stereotypes are actual facts. Should we care whether
our models are racist and xenophobic?Would such bias disqualify an otherwise
accurate model? This problem is amplified in many cases because nonstereo-
type information is never explicitly stated. In other words, even phrases like a
sober Ferengi or a peaceful Klingonmake reference to the underlying negative
stereotype.
Minority groups are systematically disadvantaged by computational mod-

els for two reasons: First, smaller groups have less privacy protection even in
large data sets. This is because fewer training samples force generalizations to
be made from fewer individuals. Second, most models require more data than
is available for most languages. This means that populations which use non-
majority languages are underrepresented. This raises an important question:
Should groups like Indigenous people who are subject to special harm from
these models have access to special protections from them? In other words, if
the use of their data is more likely to harm Indigenous people, should theymain-
tain greater legal control over their data to prevent this from happening? This
comes back to our initial questions: who controls the data? And who controls
the models that depend on the data? Recent work has moved this conversa-
tion beyond terms like ownership, which are insufficient to describe the overall
problem.9

2 Text Classification
We will be looking more closely at text classifiers in this section. We start in
Section 2.1 with a question about evaluation: How do we know when a text
classifier actually works well? How do we have confidence in the models that
we end up with? We then consider how to focus our vector space onto spe-
cific parts of the linguistic signal: content or topic (Section 2.2), grammatical
structure (Section 2.3), local syntactic context (Section 2.4), and pragmatic sen-
timent (Section 2.5). Each of these sections focuses on a different vector space
that is made up of different kinds of features. Once we have learned how to
represent a corpus for classification, we discuss two important types of mod-
els: logistic regression (Section 2.6) and feed-forward networks (Section 2.7).
Finally, we end with a discussion of the ethical implications of implicit bias in
text classifiers (Section 2.8).

9 https://github.com/TeHikuMedia/Kaitiakitanga-License/blob/tumu/LICENSE.md

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://github.com/TeHikuMedia/Kaitiakitanga-License/blob/tumu/LICENSE.md
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

14 Corpus Linguistics

2.1 Evaluating Classifiers
Let’s think about a problem from corpus-based sociolinguistics to put this into
context. Our goal is to find the lexical and grammatical features that distinguish
different dialects of English. For a corpus, we will use collections of tweets
and web data from twelve different countries; these tweets provide examples
of (digital) language use in these countries. These dialects come from all over
the world, as you can see from the countries listed in Figure 2: from Australia
to South Africa to Canada. We will see in later sections how to represent sty-
listic choices in a corpus. For now, assume we have a text classifier that uses
syntactic features (in this case, construction frequencies) to predict whether
a sample comes from Australia or New Zealand. How can we know whether
these predictions are accurate?
First, we train a classifier by showing it examples of each dialect. We look at

this in more detail in Section 2.6. Conceptually, we start by dividing our corpus
into training data and testing data. Then, we show the classifier the training
data: This is the part of the corpus that the classifier uses to distinguish between
different dialects. But then we test the classifier on its predictions using the
separate testing data. This part of the corpus is held-out: The classifier has never
seen these samples. Let’s say I have some test tweets in American English.
What dialect does the classifier predict? If it predicts American English, that’s
good. But if it predicts New Zealand English, that’s bad. And this is our basic
approach to evaluation: We keep this separate testing data that our classifier
never sees so that we can test the classifier’s predictions.

0.0

Precision

0.2 0.4 0.6 0.8 1.0

United States

United Kingdom

South Africa

Philippines

Pakistan

Nigeria

New Zealand

Malaysia

Ireland

India

Canada

Australia

Figure 2 Precision for dialect classification

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 15

Table 2 True and false positives and negatives

Predicted to be NZL Predicted to be AUS

Correct True Positives True Negatives
Incorrect False Positives False Negatives

Let’s think about New Zealand English. Suppose my classifier is trained to
distinguish between just New Zealand English (NZL) and Australian English
(AUS). First, we have some tweets from NZL that the classifier gets right. These
are called true positives because the predictions are correct (true) and posi-
tive (NZL). This is shown in Table 2, with correct predictions in blue cells and
incorrect predictions in red cells. Second, we have some tweets from Austral-
ian English that the classifier gets right. These are called true negatives because
the predictions are correct (true) and negative (not NZL).
But what if the classifier is wrong? For example, we have some tweets in

Australian English that our classifier predicts are from New Zealand. But we
know they are fromAustralian English. These are called false positives because
the predictions are false (incorrect) and positive (NZL). So the bottom left cell
contains all the tweets from Australians that our classifier predicted to come
from New Zealand. And finally we have false negatives: These are the tweets
from New Zealand that the classifier thought came from Australia. So these
four cells describe all the predictions that the classifier canmake: true positives,
false positives, true negatives, false negatives.
Now let’s measure the quality of the classifier’s predictions. The equation

for a measure called precision is shown below. If the classifier identifies 100
tweets as New Zealand English but only 90 of those are actually from New
Zealanders, the precision is 0.90. The higher the precision, the cleaner andmore
reliable the classifier’s predictions. In other words, a high precision means that
there are fewer false positives.

Precision = TP/(TP + FP) (2.1)

Let’s go back to our problem. Figure 2 shows precision for the twelve dialects
in our classifier. The higher the precision, the fewer false positives there are.
So these results show us that India is more precise than Australia. It is a
more unique dialect. In other words, other dialects are not mistaken for Indian
English.
The equation for another measure, recall, is shown below. If the classifier

identifies 90 of the 100 tweets from New Zealand correctly, but gets 10 wrong

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

16 Corpus Linguistics

0.0

United States

Recall

United Kingdom

South Africa

Philippines

Pakistan

Nigeria

New Zealand

Malaysia

Ireland

India

Canada

Australia

0.2 0.4 0.6 0.8 1.0

Figure 3 Recall for dialect classification

because it thinks they are from Australia, the recall is 0.90. The higher the
recall, the more complete the collection of New Zealand tweets is. The lower
the recall, the more New Zealand English the classifier has missed.

Recall = TP/(TP + FN) (2.2)

Figure 3 shows the recall for our twelve countries. The higher the recall,
the more likely the classifier has found all the examples of that dialect. You
will notice that there are central dialects, like American and British English.
These are harder to tell apart from other dialects because they have had a lot of
influence. In other words, if British English is the mother of Nigerian English
then it is going to look a little bit like Nigerian English. So the recall is a bit
lower. On the other hand, look at Malaysian English. This is a unique dialect.
Every time it sees Malaysian English, the classifier knows exactly what dialect
it is. So recall is about measuring how complete our picture of each category
is, and here the categories are national dialects.
Sometimes there is a gap between precision and recall. Look at Canada. The

precision is not bad: 0.89. This means that a lot of what the classifier predicts to
be Canadian English actually is. But the recall is just slightly lower: 0.88. This
means that the classifier misses a bit more Canadian English, mislabeling it as
some other dialect. If we look at the errors, it turns out that a lot of Canadian
English is mistaken for American English. So even the classifier’s errors tell us
something about the categories that we are modeling. If we look at the errors
for New Zealand, it is mostly confused with Australian English. And that also

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 17

0.0

United States

F-Score

United Kingdom

South Africa

Philippines

Pakistan

Nigeria

New Zealand

Malaysia

Ireland

India

Canada

Australia

0.2

TW
WEB

0.4 0.6 0.8 1.0

Figure 4 F-score by source for dialect classification

makes sense. So we have a classifier that is good at predicting what country
a tweet is from based on syntactic features. And the errors that the classifier
makes tell us which dialects are more similar. Models like this are the rea-
son we can understand the styles of different writers using authorship analysis,
something that we talk about later in this section.
But what if we want just one measure, instead of both precision and recall?

The f-score is a variant of the average precision and recall. Basically, this takes
both true positives and false negatives into account at the same time. Imagine
that we have only 100 tweets from New Zealand and 1,000 from Australia.
Then we could simply guess AUS every time and still end up with a precision
of 0.91. In this case, though, the recall for New Zealand would be quite low.
The f-score works well in cases of imbalanced categories, like when we have
a lot more samples from Australia than from New Zealand. In other words, the
f-score ends up a lot lower than precision in a case like this. And that is a more
realistic measure of prediction accuracy.

F − Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(2.3)

We show the f-score for each dialect in Figure 4. Here we have modeled
the same national dialects from two independent sources of corpora: tweets
and web pages. Both types of digital data provide an approximation of actual
usage in a particular place. If the results for each dialect vary widely, this would
indicate that one or both sources is a poor representation. What we see, instead,

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

18 Corpus Linguistics

is that they largely agree in terms of the prediction accuracy for each dialect.
In other words, this provides evidence for the robustness of this dialect model.
The main idea in this section is that, no matter what classifier we use, we

evaluate it the sameway: by testing its predictions on unseen samples. Precision
tells us about the rate of true positives and recall tells us about the rate of false
negatives. Finally, the f-score gives us a single measure of accuracy that also
works well in cases where one category has a lot more samples than another.
This section’s lab10 explores the use of constructions to represent syntactic
variation. This is based on work in both computational construction grammar
(Dunn, 2017, 2018b, 2019a; Dunn & Nini, 2021; Dunn & Tayyar Madabushi,
2021) and computational dialectology (Dunn, 2018a, 2019b, 2019c).

2.2 Representing Content
This section discusses in more detail how we can transform a document into a
vector space that focuses on the semantic content of that document. You will
remember that we start to represent the meaning of a document by counting the
words it contains. Many types of corpus analysis are interested in the meaning
or content of a text. What topic is this tweet about? What political issue does
this speech discuss? When we talk about content in this way, the grammar and
style and sentiment of the document are irrelevant. So we want to represent the
content while ignoring these other parts of the linguistic signal.
In the previous section, we looked at the results of dialect classification,

where the categorization problem was to determine the dialect region of the
author of a document. We focused on how to evaluate the classifier, so we did
not see how the model works in detail. Let’s start by changing the problem:
Instead of looking at syntactic representations, we will look at lexical repre-
sentations. For this example, we take tweets from thirty different cities around
the world. We want to learn what each city is like, what events are happening,
what kind of people live there, what the human geography is. We can formulate
this as a categorization problem: Can we train a text classifier to predict what
city each sample is from using content words? This model will help us discover
what makes each city unique, using the content of tweets.
To represent content, start by removing stopwords from the corpus. These

stopwords include function words like the and every and did. They also include
words, such as seemed or going, which have a grammaticalized meaning. The
basic idea is that these words are so common across all documents that they
do not contribute to the unique meaning of the documents; this is a view of

10 Lab 2.1 –> https://doi.org/10.24433/CO.3402613.v1

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 19

meaning that focuses on the properties that distinguish one document from
another. We might define the list of stopwords in advance, as we do in the
text_analytics package. Or we could define the stopwords as the n most fre-
quent words in the corpus. In (7a) we see an example sentence from the corpus
and in (7b) we see that same sentence without stopwords.

(7a) Get or make an ebike and it’ll pay for itself with extra benefits in
no time
(7b) make ebike pay extra benefits

We then use the version of the sentence in (7b) to make a vector of con-
tent word frequencies. This vector ignores much of the linguistic structure to
focus on the content of the sentence. Ultimately, we want to know what makes
each of these cities different. Many topics will be equally common in every
city: SPORTS, TRAFFIC, WEATHER. So we also use Term Frequency-Inverted
Document Frequency (TF-IDF) to highlight distinctive words.
The idea is to adjust or weight the frequency of each word according to the

number of documents it occurs in. For example, if traffic occurs in 100,000
tweets, thenwewant to reduce its overall importance. But if blues is rare inmost
cities, we want to increase its overall importance. Term frequency is what we
have already been using: frequency alone, how many times a word occurs in a
specific document. But the weighting term, inverted document frequency, rep-
resents the number of documents that the word occurs in. This is a measure of
dispersion, capturing the degree to which words are equally spread throughout
the corpus.
The word frequency in each document is weighted using the idf value.

Weighting here just means that we make an adjustment to the raw frequency;
thus, we are no longer using raw frequency alone. In the equation below, df is
the number of documents (tweets) this word is observed in. And n is the total
number of documents in the corpus. We add 1 to both values, in part to make
sure that there are no values with 0. The final term, +1, ensures that each word
is represented by at least its document frequency. For example, if the is found
in every document, its idf will be 0. So the final term makes sure that com-
mon words are still accounted for. Finally, the logarithm allows the measure to
accommodate different orders of magnitude for frequency values.

idf(word) = log 1 + n
1 + df(word) + 1 (2.4)

Let’s take a look at how this works. Let’s say the word the occurs in 998 of
1,000 documents. But the word blues occurs in 14 of 1,000 documents. n is
the number of documents in total (1,000). df is the number of documents that

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

20 Corpus Linguistics

contain a word like the or blues. We add 1 to both terms, in part to avoid having
0 in either term. The core ratio is 1.002 for the and 66.73 for blues. Intuitively,
this initial quantity is going to really highlight any occurrence of blues. And
that is what we want, because it is rare and thus can be used to distinguish
the documents which contain it. However, this version provides too strong an
effect: 1 for the and 66 for blues. So we take the log and add 1. This smooths
the measure and gives us a weight of 2.82 for blues and 1.008 for the. If we did
not use the log to smooth these values, the weighting for rare terms would be
too extreme.
So far we are representing content in vector space by removing stopwords,

taking the frequency of the remainingwords, and adjusting that frequency using
TF-IDF to highlight words that occur in only a few documents. As we start to
highlight less common words, we might notice some strange words: angeles or
katrina or erie. The problem here is that we miss phrases with one common and
one uncommon word. The actual features should be los angeles or hurricane
katrina or lake erie. How can we learn which words are actually phrases that
should be viewed as a single feature?
The answer has to do with probability: A phrase is when two words are

almost as likely to occur together as they are to occur individually. We measure
how strong the association of a phrase is using Pointwise Mutual Informa-
tion, or PMI (Church & Hanks, 1990). Here we have the probability that los
angeles occurs as a phrase over the probability of los on its own and the proba-
bility of angeles on its own. These probabilities become quite small, so we use
the logarithm. The probabilities that we use here are actually just relative fre-
quencies. In other words, the probability that w1 and w2 occur together is based
on the frequency with which we observe them occurring together. In the labs,
we use a normalized version of PMI, adjusted so that the values fall between
−1 (words with no chance of occurring together) and 1 (words which always
occur together).

PMI(w1,w2) = log
P(w1,w2)

P(w1) ∗ P(w2)
(2.5)

Here in Table 3 are some examples of the kinds of phrases that PMI gives
us from the tweets. We have names of places like Baton Rouge and names of
events like Typhoon Hato. Then we have names of people like Rudy Giuliani
and names of organizations like Hillbrow Radio. And finally we get colloca-
tions: herd immunity and sanitary napkins and chest pains.We get these phrases
before we do any other processing.
Let’s review: We are looking at the frequency of words. But many function

words do not reflect the content of a document, so we first remove stopwords.
And frequency alone emphasizes commonwords, so we use TF-IDFweighting to

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 21

Table 3 Phrases using Pointwise Mutual Information

Places causeway bay, gallery in putney, southeast asia
People coco chanel, duke of sutherland, ringo starr
Terms sanitary napkins, herd immunity, chest pains

Table 4 Classification results for thirty cities using tweets

Precision Recall F-Score N. Test

Adelaide 0.92 0.91 0.92 503
Atlanta 0.94 0.92 0.93 542
Auckland 0.98 0.99 0.99 479
Bengaluru 0.95 0.94 0.95 487
Boston 0.96 0.92 0.94 504
… … … … …
San Francisco 0.95 0.95 0.95 479
Seattle 0.95 0.96 0.95 492
Singapore 0.99 1.00 0.99 501
Sydney 0.84 0.84 0.84 457
Toronto 0.96 0.97 0.96 520
Washington 0.94 0.96 0.95 472

Weighted Average 0.95 0.95 0.95 15,003

highlight uncommon words. And rather than rely on individual words, we find
multi-word expressions using PMI as a measure of association. Now we have
represented the content of our tweets by converting them into a single shared
vector space.
Here in Table 4 we are looking at precision, recall, and f-score by city for

our problem of distinguishing between different cities using what we might call
human geography. This is based on content, the opposite of the dialect classi-
fication that we looked at last time. We might also think about this as a model
of lexical variation, except that we have not controlled for differences in topic.
The predictions are quite good across 15,000 total test samples (each sample
is an aggregation of tweets). The model can tell us a lot about the social and
geographic characteristics of each city, beyond just the city label. The model
captures the properties that make each city unique and that is why it can make
such good predictions about the labels. In this section’s lab, we reproduce these
city classification results and explore them in a bit more detail.11

11 Lab 2.2 –> https://doi.org/10.24433/CO.3402613.v1

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

22 Corpus Linguistics

2.3 Representing Structure
The linguistic signal also carries information about structure (syntax). This is
information which we purposely covered up in the previous section. In the next
section we will look at how to represent grammatical structure for the purpose
of directly modeling syntax for part-of-speech tagging. But first let’s use gram-
matical structure to model sociolinguistics: stylistic variation across individual
authors. The case study focuses on authorship for nineteenth-century books:
Can we determine who wrote a given selection from a book?
Look at the examples below in (8a) to (8e). Each of these examples has the

same general meaning. And each example would have a very similar repre-
sentation given our methods for representing content. But the syntax of each
sentence is quite different.

(8a) I go around puddles when I bike to work.
(8b) I avoid puddles when biking to work.
(8c) I avoid puddles on my way to work.
(8d) I hate cycling through puddles on my commute.
(8e) Puddles are something I always go around when I am commuting.

We can use these grammatical differences to predict sociolinguistic infor-
mation about the text’s author: gender, dialect, native language, and sometimes
even age and class. The basic idea is that we all (unconsciously) prefer differ-
ent variants. A variant here is an alternation, like go around vs avoid or like
on the way to work vs commuting. We have many choices like this in every
sentence that we produce, tens of thousands of choices (Dunn, 2018a). How
can we represent a corpus to focus on these kinds of grammatical choices?
In analytic languages like English, function words are a good proxy for

grammatical structure. Function words are things like pronouns (you, me),
conjunctions (and, or), prepositions (in, on), auxiliary verbs (was, were), and
wh-words (who, what). But they also include common words with a grammati-
calized meaning (such as going or seem). Of course, English syntax has a much
richer structure than these features are able to pick up. But function words are
easy to identify and count. That ease of use has made them a good first tool for
representing grammatical structure in a corpus.
Stylistics offers a glimpse into demographics. In other words, one of the

fundamental properties of language is that it encodes social attributes. From
this perspective, each of us belong to different groups, different combinations
of social attributes. Some of our linguistic patterns come from larger groups
(dialects) and some of them are specific to us as individuals. In and of itself,
each stylistic feature is meaningless. But, taken together, the structure of a text
provides a pointer to the individual who produced it.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 23

Table 5 Examples of function word n-grams

from the were too there is must be
by way through the is very away it
way of with the very little it is
at that we shall in it they know

We also use different language in different contexts. For example, people
writing an email to someone in authority (like their boss) would say something
like I’m wondering if you have time for a meeting with me tomorrow? But
people writing an email to someone under their authority (like an employee)
are more likely to say something such as Let’s meet tomorrow afternoon to
discuss the report. We can see that there are significant differences here in the
use of pronouns and other function words (Pennebaker, 2011). This suggests
that we can use function words as a proxy for these syntactic variations.
So far we have counted the frequency of individual words and phrases. From

this perspective, the order of words in a sentence is irrelevant because a word’s
position in the vector is not related to its position in the sentence. But for syn-
tactic structure this assumption no longer works. For example, I am going to
the store and Am I going to the store have very different meanings. In other
words, the choice of I am vs am I has a significant impact on the meaning. An
n-gram is a way of counting words while retaining order. If we count pairs of
two words we call these bigrams (like I am); and if we count sets of three words
we call these trigrams (like would have been). When we use n-grams, we count
each pair of words as if it were just one unit. Table 5 shows a few examples of
sequences that are function word n-grams.
Let’s see how the sentences in (8) look whenwe represent them using vectors

of function words (focusing only on unigrams for the sake of space). The table
below shows our vector space representation of the sentences, using only gram-
matical items as features. Even though the sentences have the same content,
their syntactic vectors are quite different.

always am are around I my on through to when
(8a) 0 0 0 1 2 0 0 0 1 1
(8b) 0 0 0 0 1 0 0 0 1 1
(8c) 0 0 0 0 1 1 1 0 1 0
(8d) 0 0 0 0 1 1 1 1 0 0
(8e) 1 1 1 1 2 0 0 0 0 1

Let’s model variation in these features using books from Project Gutenberg,
looking at authors born between 1850 and 1900. We will be working with over

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

24 Corpus Linguistics

Table 6 Classification results for twenty-four authors Using published books

Precision Recall F-Score N.Test

Jane Abbott 0.98 0.99 0.99 102
Joseph Altsheler 1.00 1.00 1.00 59
Arnold Bennett 1.00 1.00 1.00 45
Harold Bindloss 1.00 1.00 1.00 80
Arthur Conan Doyle 1.00 1.00 1.00 68
… … … … …
Mrs. Humphry Ward 0.97 0.99 0.98 75
Charles Warner 1.00 0.91 0.95 23
Carolyn Wells 0.98 0.98 0.98 48
Stanley Weyman 1.00 0.98 0.99 51
Henry Wood 1.00 0.97 0.98 61

Weighted Average 0.99 0.99 0.99 1,600

1,100 books written by 24 different people (only those who wrote at least 4
different books). We first break up each book into a bunch of smaller parts,
chapter-size chunks of about 5,000 words. The question is, how well can a text
classifier predict who wrote each of these chapters, given a vector of function
word n-grams?
Here in Table 6 are the results of our experiment. We train the classifier

on one set of samples, then test it on another set. We will talk about how to
train the classifier in a later section. For now, we see that a text classifier is
very good at distinguishing between different authors. The overall f-score is
0.99. None of the content is represented here, so we know this has nothing
to do with terms like Sherlock Holmes. This model only has access to func-
tion word n-grams that are a proxy for the syntactic choices made by different
writers.
In this section’s lab, we show how to recreate this experiment in authorship

analysis with a bit more detail.12

2.4 Representing Context
In the previous section we represented syntactic choices throughout an entire
document using function word n-grams. This tells us a great deal about the
overall style of that document, but this kind of representation would not be

12 Lab 2.3 –> https://doi.org/10.24433/CO.3402613.v1

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 25

Table 7 Universal parts of speech as a categorization system for words

Open Class Closed Class Other

ADJ (adjective) ADP (adposition) PUNCT (punctuation)
ADV (adverb) AUX (auxiliary verb) SYM (symbol)
INTJ (interjection) CCONJ (co-ordinating conj) X (other)
NOUN (noun) DET (determiner)
PROPN (proper noun) NUM (numeral)
VERB (verb) PART (particle)

PRON (pronoun)
SCONJ (subordinating conj)

helpful for a problem like predicting the part of speech of individual words.
Here we will put together a positional vector which better represents the syn-
tactic context for individual words. This is a better representation for making
predictions about words because it captures the specific linguistic context of
each particular token.
We start by coming up with a set of syntactic word classes, drawn from

the Universal Part-of-Speech tag set (Petrov, Das, & McDonald, 2012). As
shown in Table 7, there are two main categories: open-class words (like nouns
and verbs) and closed-class words (like adpositions and pronouns). You will
notice that there are also catch-all categories (like X or SYM). These are impor-
tant because every word in a corpus needs to be tagged. If we are not sure
what the syntactic class should be, these miscellaneous categories are helpful.
In our previous categorization problems, we relied on nonlinguistic informa-
tion for our categories (like New Zealand English as a dialect or Arthur Conan
Doyle as a writer). Here we directly annotate linguistic categories, like noun
and verb.
We represent each word given the surrounding context window. Consider the

sentence in (9). For each word, we want to know the words which come before
and after it. These context windows are shown in (9a) through (9c), with the
target word in small caps and bold. Here we use a window size of two words
before and after. Each word is thus represented by a sequence of five items,
with the word itself in the center position.

(9) We are aware of six studies designed to investigate the question.
(9a) are aware OF six studies
(9b) aware of SIX studies designed
(9c) of six STUDIES designed to

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

26 Corpus Linguistics

We convert this sequence into a one-hot encoding of positions. A one-hot
encoding, you will remember, is a vector in which each dimension represents
a single piece of information. In the vector representation below, we repre-
sent just two positions: the first word (1) and the last word (5). So if the first
word is are, as in (9a), the vector starts with a 1. But otherwise the vector
starts with a 0. This positional vector represents each word within its immediate
context.

1=are 1=aware 1=of 5=studies 5=designed 5=to
(9a) 1 0 0 1 0 0
(9b) 0 1 0 0 1 0
(9c) 0 0 1 0 0 1

We use the training corpus to find the vocabulary and fit a one-hot encod-
ing to represent the observed sequences of words. Of course, we will never
observe all possible word sequences in the training corpus. We resolve this
problem by having a special token that represents an out-of-vocabulary word.
For example, consider the example in (9b’), where we have studies as a
missing out-of-vocabulary word. In this case, the other parts of the con-
text are still represented, giving the tagger a chance to still make a correct
prediction.

(9b’) are of SIX [OOV] designed

The larger our vocabulary and the longer the context we use for each word,
the larger this positional vector will become. We will see in the labs how to
easily convert sentences into this format; although it is not easy for linguists
to interpret these vector representations (as opposed to frequency vectors, for
example), they are not problematic for a text classifier.
We use a logistic regression classifier (see Section 2.6) to predict the part-

of-speech tag for each word given a one-hot encoded positional vector. Some
classes, like DET or ADP, should be easier to predict because they form a closed
class. This is exactly what we find in the results in Table 8. The overall pre-
diction quality achieves an f-score of 0.93 across nearly 56,000 word tokens.
More advanced taggers have improved upon this level of performance. The
point here, however, is to show how to use a positional vector to represent
syntactic information; even this simple approach performs quite well on the
task.
You will notice that the categories which lower the overall performance are

those which serve as catch-all categories, for example X. This is because these
categories contain precisely those tokens which are difficult for us to categorize

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 27

Table 8 Classification results for predicting parts of speech

Precision Recall F-Score N.Test

ADJ 0.89 0.84 0.87 3,698
ADP 0.93 0.97 0.95 5,334
ADV 0.90 0.80 0.85 2,540
AUX 0.95 0.97 0.96 3,032
CCONJ 0.99 0.99 0.99 1,801
DET 0.97 0.97 0.97 4,650
INTJ 0.97 0.77 0.86 181
NOUN 0.86 0.95 0.90 9,798
NUM 0.95 0.85 0.90 958
PART 0.95 0.97 0.96 1,420
PRON 0.96 0.96 0.96 4,575
PROPN 0.87 0.76 0.81 3,156
PUNCT 0.99 1.00 0.99 6,816
SCONJ 0.84 0.76 0.80 1,060
SYM 0.93 0.64 0.76 134
VERB 0.92 0.91 0.92 6,165
X 0.92 0.28 0.43 128

Weighted Avg 0.93 0.93 0.93 55,947

as linguists. We show how to create a positional vector to capture syntactic
information in the lab for this section.13

2.5 Representing Sentiment
Now that we have represented content, structure, and context, the final part of
the linguistic signal that we can use for text classification is sentiment (prag-
matics): What is the tone or emotion expressed in the text? This is important
because two similar authors might write about the same topic from very dif-
ferent perspectives. Look at the sentences in (10a) and (10b), where words that
carry sentiment are shown in brackets. Both sentences have the same basic
meaning, if we had used our content representation: There is a piece of legis-
lation in congress that would let one branch of government carry out a new
authority. But the opinion expressed in (10a) is negative while the opinion
in (10b) is positive. This difference is what we mean by the term sentiment
analysis.

13 Lab 2.4 –> https://doi.org/10.24433/CO.3402613.v1

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

28 Corpus Linguistics

(10a) The [awful] amendment under consideration grants [frivolous] powers
to the executive branch, [threatening] [disastrous] effects for many [horrible]
years.

(10b) The [well-crafted] amendment under consideration grants [vital]
powers to the executive branch, [promising] [meritorious] effects for many
[wonderful] years.

If we represented these sentences using content words, they would look the
same in vector space. If we looked at the form of these sentences, we would see
exactly the same function word n-grams. The only difference between them is
sentiment. We take a dictionary-based approach to sentiment (Wang, Lu, &
Zhai, 2011): We have a list of positive words and a list of negative words.
These positive and negative words, and nothing else, will provide our features
when we convert texts into numeric vectors for sentiment analysis. Because
the dictionary is defined in advance, by linguists, we do not need measures like
TF-IDF or PMI to improve the representation.
In this Element we take a traditional approach to representing sentiment,

which divides words into POSITIVE and NEGATIVE and NEUTRAL, where neu-
tral words are not used for sentiment analysis. Thus, our dictionary creates
a list of words which are considered to be POSITIVE or NEGATIVE regardless
of their specific context. From a linguistic perspective, this is a simplifying
assumption. We know that there are types of pragmatic meaning like meta-
phor, irony, sarcasm, and humor in which the context can radically change
the meaning of a word (Dunn, 2013a, 2013b, 2014). And we know that there
are more types of pragmatic meanings, like politeness and register, which
might be considered alongside sentiment. Although this approach to represent-
ing sentiment ignores these finer distinctions, it remains effective for many
problems.
Sentiment features are language-dependent. Content features, using TF-IDF

and PMI, can be created for any language. And the equivalent of function word
n-grams can be created by choosing the most frequent words to approximate
function words. But we, as linguists, would need to annotate the sentiment lex-
icons for each new language, with the effect that sentiment representations are
the most difficult to transfer across languages.
Let’s say we wanted to understand tourist behavior in the aggregate using

hotel reviews. Content analysis can tell us what is being talked about: hotels,
restaurants, arts venues, sports venues, and so on. Authorship analysis can tell
us who each reviewer is, the demographics of the people who produced the
data. And now sentiment analysis can tell us how the reviewer enjoyed their
experience.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 29

Table 9 Vectors for sentiment analysis

POS enjoyed stylish polite courteous always appealing

(10a) 1 1 1 1 1 1
(10b) 0 0 0 0 0 0

NEG endured drab rude impersonal never nightmarish

(10a) 0 0 0 0 0 0
(10b) 1 1 1 1 1 1

Imagine twoAmericans visiting the same hotel; one hates it and the other one
loves it. How do we know which is which? Think about these two sentences:

(11a) I [enjoyed] a [stylish] hotel room with [polite] and [courteous] staff
[always] available in the [appealing] lobby.

(11b) I [endured] a [drab] hotel room with [rude] and [impersonal] staff
[never] available in the [nightmarish] lobby.

The first sentence is from a positive review. The second is from a negative
review. When we convert these into a vector space that represents sentiment,
using our dictionary of positive and negative words, we get the vectors that
we see in Table 9. We have separated the positive and negative words into two
vectors to highlight how different the representations have become.
We already have a dictionary of positive and negative words, so we just count

howmany times each word occurs in each review. These examples are straight-
forward because the positive review has only positive words. And the negative
review has only negative words. Youwill also notice that these sentiment words
cross syntactic categories: verbs (endured), adjectives (rude), and even adverbs
(never).
Now let’s try this out on a real-world data set. We have about 2 million hotel

reviews in the corpus and we want to use them to figure out which hotels are
good and which ones are not so good. Since we want to know about hotels,
we put all the reviews about one hotel together into a single document. This
approach will tell us about the hotel itself rather than about individual review-
ers. Next we train the classifier, so we need to find the average rating for each
hotel to be our ground-truth label. This gives us a float between 1 and 5 for
each hotel: the average rating. But a classifier needs discrete boxes. So we bin
these reviews. In other words, we need to make that decimal number (float)
into categories. We define everything below three stars as LOW and everything
above four stars as HIGH.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

30 Corpus Linguistics

Table 10 Classification results for hotels by Average Rating

Precision Recall F-Score N.Test

LOW Rating 0.99 1.00 1.00 363
HIGH Rating 0.99 0.99 0.99 167

The predictions, shown in Table 10, are quite good. That means the classifier
has gotten almost every hotel correct. Looking at the number of samples, you
can see we are making predictions about 530 different hotels that the classifier
has never seen before. So that tells us the classifier has learned to generalize
the features that distinguish between good and bad hotels. A linguistic analysis
of sentiment is more nuanced, as we have already discussed. But, in cases like
hotel reviews, a simpler approach works very well for applying corpus analysis
to problems that are outside of linguistics itself. In the lab for this section, we
show how to replicate this analysis of hotel reviews in Python.14

2.6 Logistic Regression
We have seen how to evaluate the predictions that a text classifier makes on
held-out testing data, using precision and recall and the f-score. We have also
seen how to represent language in vector space so that we highlight different
parts of the linguistic signal. But we have not considered the inner workings of a
text classifier or how we go about training a model. In the next two sections we
will consider logistic regression and then feed-forward neural networks. These
models convert a high-dimensional vector that represents the input (for exam-
ple, function word frequencies) into a single value that represents the predicted
class (for example, the author). The final part of this section will consider the
ethical implications of implicit bias in text classifiers.
The basic idea for logistic regression is to learn a weight for each feature

or dimension in our input vector. The goal of the classifier is to find the best
feature weights (w1...wn) for distinguishing between our category labels. The
difficult part of the task is to update these weights in order to find the model
state which makes the best predictions. To figure out this problem, the clas-
sifier uses a classification function to make class predictions from the scalar
output of the feature weights. And it uses an objective function to measure how
many errors the current featureweights produce. These components are listed in
Table 11.

14 Lab 2.5 –> https://doi.org/10.24433/CO.3402613.v1

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 31

Table 11 Components of logistic regression

General Type Specific Name

1 Feature Weights and Bias w + b
2 Classification Function Sigmoid
3 Objective Function Cross-Entropy Loss

This algorithm takes as input our feature vectors that represent each sample.
Let’s take as an example the problem of identifying how good a hotel is given
a set of hotel reviews. For each hotel, x is our vector of sentiment word fre-
quencies. And y is our ground truth, the quality of the hotel. Each feature in
our input vector, x, has its own weight, w. Both the feature and the weight are
scalar values: We might have a feature value of 1 and a feature weight of 0.1,
as in the first position in the vector below.

x = [1,4,3,0,0,1,0,2,0,3,0,2,3] (2.6)

y = HIGH (2.7)

w = [0.1,0.4,0.3,0.1,0.4,0.1,0.1,0.2,0.1,0.3,0.1,0.2,0.3] (2.8)

The notation below uses a dot product to indicate that each feature is mul-
tiplied by its own weight and the result is summed across all features. So, if
the feature awful occurs 5 times and its current weight is 0.25, the result is
5 ∗0.25 = 1.25. This float (a scalar number) is added together with every other
feature to produce a single float as output. In some cases, a fixed bias term
is added, b, which would also be learned as part of the training process. The
output of the dot product operation is a single float, z, which represents the
classifier’s current output for the current input sample.

z = w · x + b (2.9)

But this value, z is still not a prediction from a human perspective. Logistic
regression is an example of binary classification because it works with only
two classes. To make a prediction, the algorithm uses a classification function
that takes z and converts it into a class prediction, y. In the case of logistic
regression, the sigmoid is used as a classification function, shown below. You
will remember that y is our label, in this case whether the hotel’s average rating
is HIGH or LOW.
The purpose of the classification function (here, the sigmoid) is to force

the value of z (the combination of observed features and hypothesized feature
weights) away from the dividing line. As shown in Figure 5, if the value of z

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

32 Corpus Linguistics

−5 0 5

0.0

0.5

1.0

Class A

Class B

Figure 5 Relationship between z and y for the sigmoid

is below 0.5, the model predicts one class (HIGH). But if the value of z is above
0.5, the model predicts the other class (LOW). The effect of the sigmoid is to
push values away from the middle point. The black horizontal line shows the
threshold: Class A is any value above the line and Class B is any value below
the line. This is how we convert the scalar value of the input weights to the
discrete value of the output label.

y =
1

1 + e−z
(2.10)

This combination of feature weights and classification function allows logis-
tic regression to make predictions. But how does the model learn the right
feature weights? There are several training algorithms available, for exam-
ple stochastic gradient descent. These algorithms optimize the feature weights
by minimizing the amount of error produced by the model. The important
point here is how we measure model error: Logistic regression uses the binary
cross-entropy loss as an objective function, because it is dealing with just two
classes.
When we evaluate the trained classifier, we use measures of accuracy (preci-

sion, recall, f-score). But we use a more specific optimization function during
training because we want the model to make predictions that are far away from
the dividing line. In other words, the prediction z = 0.45 for a negative sample
would make a correct prediction, because it falls into the negative class. But a
prediction z = 0.10 is a better prediction because it is further away from the
dividing line. It is more correct. And cross-entropy loss provides a measure of
the degree to which this second prediction is better.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 33

Here’s where we are: We extract a feature vector to represent each hotel
review, x, and the model hypothesizes weights for each feature, w1...wn. These
weights are used to make a prediction, z, using the sigmoid as a classification
function. Each round of training works on a few dozen samples and measures
the quality of the predictions that are based on the current feature weights. The
cross-entropy loss is a measure of how much error the model produces. We
want to minimize the total error.

Binary Cross Entropy (y, ŷ) =
∑

−y log(ŷ) − (1 − y) log(1 − ŷ) (2.11)

The equation above is the equivalent of finding p(y|x) for each training sam-
ple. Thus, we are summing across the labels, y, to have a measure across many
samples. In the notation here, y is the correct class and ŷ is the predicted class.
Because there are only two classes, the probability of one class is represented
as log(y); and the other class is log(1 − y). In other words, every sample that
does not belong to Class A must belong to Class B.
We could imagine the classifier getting a first batch of reviews which all

share a feature like awful, perhaps because they were written by the same
author. If a single feature is present in all negative samples for a training batch,
the classifier will learn a high weight for that feature. But high feature weights
are less likely to generalize; for example, they would fail to describe reviews
which do not include awful.

L2 Regularization =
∑

w1...wi

w2 (2.12)

For this reason, logistic regression also often uses a regularization method,
such as L2 Regularization. This value is the sum of the square of all feature
weights. In other words, if one feature has a high weight (like 10) and the other
features have a lowweight (like 1), this regularization will reduce that overused
feature. So, this is a method for helping the classifier to avoid relying on just
a few features. The regularization term is added to the optimization function
above (binary cross-entropy loss), so that high feature weights are associated
with worsemodels. For example, features weights 1.1,1.4,0.75 have an L2 term
of 1.21+3.17+0.56 = 4.94. But alternate feature weights 0.98,0.75,0.12 have
an L2 term of 0.96 + 0.56 + 0.01 = 1.53. This is how a regularization term can
keep the classifier from relying too much on just a few features, by encouraging
lower weights as part of the objective function.
A final parameter that you might encounter with logistic regression is the

method of dealing with multiple classes. For example, our hotel review prob-
lem has just two classes (HIGH and LOW), so the sigmoid classification function
works well. But we have other problems, like authorship analysis, that have

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

34 Corpus Linguistics

a fairly large number of classes. In these cases, one option that many imple-
mentations use is calledOne-vs-Rest or OVR, in which the classifier is actually
made up of a separate classifier for each class. A different option, which we
will see in the next section, is to use a different classification function than the
sigmoid.
Even with these parameters to set, classifiers like logistic regression are gen-

erally well understood and the default settings used in the code notebooks above
and the text_analytics package will generally work well for problems in corpus
linguistics.
It is worth reviewing the details for logistic regression in this section before

continuing. We will see these same mechanisms in future models: feature
weights, a classification function, an optimization function, and a regulariza-
tion term. In Section 2.7, feed-forward networks can be seen as expansions on
some of these core ideas. And, in Section 3.5, word embeddings use the fea-
ture weights from a logistic regression classifier to represent the distribution of
words as part of distributional semantics.

2.7 Feed-Forward Networks
A feed-forward network is the most basic kind of deep neural network. These
models are also sometimes called a multi-layer preceptron or an MLP. It turns
out that deep neural networks like this can be seen as an extension of logis-
tic regression. You will remember that a logistic regression classifier makes
predictions by multiplying each feature value (our vector representation of lan-
guage) by a feature weight, represented in the equation below with dot product
notation. Together with a bias term, this produces a single float or scalar value
for each sample: Values above the decision line belong to one class and values
below it belong to another class. The predicted class here, ŷ, is the output of
the classifier. And the classifier itself is a function, f(x), which maps between
input representations (x) and output labels (ŷ).

ŷ = f(x) = x · w + b (2.13)

A deep neural network can be viewed as an expansion of this equation, given
below. In this notation, ŷ is the predicted class, the output of the classifier. And
f(x) is the function or model that is applied to our input vector in order to make
this prediction. So a feed-forward network expands on logistic regression by
adding this ϕ(x) term. This part of the model creates a trainable intermediate
representation between the input (our vector) and the output (our summed fea-
ture weights). This intermediate representation is trainable in the sense that it
is updated as part of the training process (Goldberg, 2017).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 35

x

y

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

x

x

x

Figure 6 Visualization of a feed-forward network

ŷ = f(x) = ϕ(x) · w + b (2.14)

This is visualized in Figure 6, which shows that the model starts with the
input vector (x) and ends with the prediction layer (y), where the prediction
layer is similar to the summed feature weights used in logistic regression.
The main difference with a deep neural network is that there are multiple
hidden layers between the input and the output. Each of these hidden lay-
ers contains a variable number of neurons, each with a particular type of
activation.
One common type of activation for neurons in these hidden layers is the

sigmoid – exactly the same classification function that we used for logistic
regression. Another common activation, the one which we use in the code note-
books, is called the ReLU activation. As shown below, this is a very simple
neuron which works by replacing negative values with 0.

ReLU(x) = max(0,x) (2.15)

A feed-forward network is fully connected, meaning that each input value
(x) is connected with each neuron in the hidden layer. Thus, if we have 500
dimensions in our input vector and 100 neurons in a hidden layer, then the
model has 500 ∗ 100 = 50,000 parameters. Logistic regression, on the other
hand, has only 500 parameters for the same input (one weight for each feature).
In Figure 6, we have just four input features (x), two hidden layers with three
neurons each (ReLU), and a single output node (y).

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

36 Corpus Linguistics

Why would we want a model to have so many trainable parameters? The
ideal hypothetical situation is that these intermediate representations that are
trained as part of the hidden layers are themselves a form of linguistic analy-
sis. For example, let’s think about sentiment in hotel reviews again. It might
be the case that some so-called positive words like amazing are often used sar-
castically: In some contexts they are positive but in other contexts they are
negative.
The ideal situation is that the feed-forward network learns some notion of

sarcasm or metaphor in its intermediate representation. This is the ideal situ-
ation because the actual fact is that we do not know what these intermediate
representations contain (which is why they are called hidden layers). A recent
trend in natural language processing is to probe these layers in order to find out
exactly what information from the linguistic signal the network is picking up
(Mueller et al., 2020). But such methods are beyond the scope of this section.
So far we have seen that a feed-forward network is like an extension of logis-

tic regression, with a trainable function that maps between the input (x) and the
output (y) using hidden layers that contain neurons. These neurons are similar
to classification functions and the two sets of terms often overlap. But how does
a feed-forward network deal with problems, like authorship analysis, that have
more than one class? If we have a binary classification problem with a feed-
forward network, we use the sigmoid as the final prediction layer (just like
logistic regression). But if we have a multi-class problem, we use the softmax
as the final prediction layer.

softmax (zi) =
ezi∑K
j=1 ezj

(2.16)

The softmax is a generalization of the sigmoid classification function.
Instead of a single scalar value, it produces a vector of values: one for each
class in our problem. You will remember that z is the output layer. Since the
softmax is for multiple classes, z is a vector. For example, zi could be the class
DICKENS in our authorship example. The softmax is thus the exponent of that
value to the base e, divided by the sum of all values of ezj for each class in
our model. In practical terms, the softmax normalizes the output layer to pro-
duce a vector of class probabilities. If the classifier thinks that the best class is
DICKENS, the probability in the class vector for DICKENS will contain the highest
value. To summarize, then, the sigmoid makes binary predictions with a single
float and the softmaxmakes multi-class predictions with a vector of floats, each
representing the probability of a single class.
The binary cross-entropy loss that we used for logistic regression was

focused on just two classes. When we use the softmax in a multi-class problem,

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 37

we also change the optimization function that we use to measure how much
error the classifier is making during training. Here we will use the categorical
cross-entropy loss. Remember that the output is a vector of probabilities for
each possible class (ŷ). Only one position in that vector is the correct class, rep-
resented here as ŷ[t]. So the categorical cross-entropy loss is the negative log
of the predicted probability for what should be the correct class. If that class is
not predicted, the probability will be low and thus its negative log will be large
(thus, meaning that the model has more error). As before, the classifier wants
to minimize this optimization function. The best model is the one which makes
the least amount of error.

Categorical Cross Entropy (ŷ,y) = − log(ŷ[t]) (2.17)

In what situations would we use logistic regression (a shallow classifier) or
a feed-forward network (a deep classifier)? First, logistic regression is simpler
and it is often best to start with the simplest method. For some problems, we
care about why the classifier is making its predictions. For example, in author-
ship problems we might want to know what features a specific author uses or
we might want to use the unmasking method to find out how robust the classi-
fier is (see Section 4.3). In these cases, logistic regression allows us to inspect
the feature weights and find out which features are being used. But it is not
possible to inspect the hidden layers of a feed-forward network.
If we have a small amount of data, it is unlikely that a feed-forward network

will be able to learn a good model. But, if we have a very large corpus for
training, it is unlikely that logistic regression will continue to improve after a
certain point. After all, logistic regression can only learn a single weight for
each feature, while a feed-forward network can learn potentially complex rep-
resentations as part of its hidden layers. So, we might prefer a feed-forward
network if we have a large corpus to work with.
The notebook for this section revisits some of our previous classification

problems, this time using a feed-forward network. We will see logistic regres-
sion in future sections because we use this same architecture to train word
embeddings. And we will see feed-forward networks again because we can
combine them with word embeddings to create models with multiple layers.15

2.8 Ethics: Implicit Bias
This final section on text classification considers the ethical problem of implicit
bias. We have so far evaluated text classifiers on held-out data using stand-
ard metrics like precision, recall, and f-score. These metrics are important

15 Lab 2.7 –> https://doi.org/10.24433/CO.3402613.v1

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

38 Corpus Linguistics

for understanding how well the classifier performs. And we have used opti-
mization functions like binary cross-entropy and categorical cross-entropy to
measure the error produced by the classifiers during training. But the problem
of implicit bias would not necessarily be identified using these measures: We
have to remember that a classifier can learn more than we want it to learn.
This is especially true when we have increasingly powerful models (like

feed-forward networks) that are trained on increasingly large corpora (contain-
ing billions of words). No linguist could read through these corpora, and we
know that text data contains many irrelevant cues or heuristic patterns. If a
model under-fits the data, the standard metrics like the f-score will be low. But
if a model over-fits the data, those metrics might not let us know.
We do not always know why a classifier works. For example, logistic regres-

sion allows us to at least inspect the feature weights; but a feed-forward network
has hidden layers that we cannot inspect. It is possible that such models will
appear to perform well when they are actually learning irrelevant cues. For
example, we might think that we can predict what an author’s favorite food is,
only to later realize that people around the world prefer different foods. So we
are actually predicting dialect or native language, together with a small inven-
tory of writers. An American dialect means the author likes burgers; a British
accent means the author likes fish and chips.
The problem is that if a classifier learns accidental cues from one corpus, it

will fail to generalize to new corpora in which those cues are missing. We have
different techniques to avoid learning the wrong cues. But the most important
idea is to use large corpora for testing and to design valid categorization sys-
tems. We will take a closer look at how to validate classifiers in Section 4.2.
Here we explore the problem of implicit bias from an ethical perspective.
In many cases we train a classifier on whatever available corpus contains

the ground-truth categories that we need. For example, we trained a classifier
to predict the rating given by hotel reviews. The data we used is the data that we
had available, an arbitrary selection method. But models tend to slowly degrade
as we move away from the training data. If we train on reviews from 2012, the
model will tend to perform worse in 2018. And by 2022 it might not work at
all. If we train on reviews in the USA, the model will tend to perform worse in
New Zealand. And in China it might not work at all. This means that although
the promise of computational linguistic analysis is to automate corpus analysis,
we still need to perform error analysis for the life of a model to make sure it
continues to work well.
We often set up a classifier evaluation using a test set that contains balanced

classes: as many news articles about corruption as news articles not about cor-
ruption, for example. But, in a real-world setting, some classes will be much

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 39

more frequent. Most articles from a newspaper will have nothing to do with
corruption. This means that many categorization problems are skewed, with
relatively small numbers of one category. Minority classes can cause problems
as the size of the majority categories increases. For example, a language like
te reo Māori (MRI) is so seldom used in digital contexts that, for the task of
language identification, most samples that are predicted to belong to MRI are
actually false positives.
And this is a problem that extends beyond prediction accuracy. Another dif-

ficulty with implicit bias for minority classes is that the classifier can learn what
a class is not without ever learning what that class is. For example, te reo Māori
is the Indigenous language in New Zealand and we might train a text classifier
to distinguish betweenMRI and ENG for corpora fromNew Zealand.16 But given
how skewed the training data is, the likely situation is that the text classifier will
actually learn a model for ENG and NOT-ENG. If we tried to use that same classi-
fier in Samoa or Indonesia, it would identify a range of different languages as
MRI. Because the assumption during training is that MRI = NON-ENG. And that
assumption is not valid outside of the New Zealand context.

3 Text Similarity
3.1 Categorization and Cognition

Human cognition is based on prototype examples, not on the discrete categories
that a classifier requires. So far our approach to corpus analysis has required
categories with discrete boundaries that are defined in advance: like part of a
novel that is either by Dickens or not by Dickens, or a word token that is either
a noun or a verb. The problem is that many aspects of human cognition are
not categorical: There are not always discrete boundaries between categories,
not all members of a category are equally good examples of that category, and
there is a hierarchy, with some categories considered BASIC (Taylor, 2004). As a
result, many linguistic phenomena need to be modeled without the assumption
of strict categorization. In this section we will see how to do this using text
similarity models, with a focus on comparison problems.
For categorization problems, using text classification, we can make predic-

tions about samples in isolation. For example, we can predict that a word is a
noun, that a document is written in American English, or that a hotel review
is positive. A categorization problem is about choosing which of our existing
labels best applies to a given sample. But for comparison problems, we make
predictions about a continuous (scalar) relationship between two samples: How

16 https://github.com/jonathandunn/eng_mri

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://github.com/jonathandunn/eng_mri
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

40 Corpus Linguistics

close is the sentiment of two reviews, how similar is the distribution of two
words, or how comparable are two corpora?
Text similarity models, then, generally involve taking two samples as input

and returning a single scalar prediction about their relationship. We can then
convert these pairwise similarity relationships into clusters and networks of
related items. For example, we will see how to cluster words into semantic
domains based on their distribution in a corpus. As soon as we construct that
cluster, we are back to a discrete category with fixed boundaries. However, we
have not defined those clusters in advance and we can still say which samples
are at the center of the cluster, the prototypes.
We start this section by looking at corpus similarity measures (Section 3.2).

These measures find relationships between entire data sets using the same type
of frequency vectors that we used for text classification. We will use corpus
similarity to explore register variation across a dozen languages. We then look
at similarity relationships within a corpus using document similarity to find
related texts (Section 3.3). As before, similarity here can be based on different
parts of the linguistic signal: content, structure, or sentiment.
We then move to relationships between words, using co-occurrence to find

the association between pairs of words (Section 3.4). This is the same method
we used previously to find phrases with the PMI. Here, we contrast the PMI

with a more precise ∆P measure which takes the direction of association into
account. The next step (Section 3.5) is to look at word embeddings created by
the Skip-Gram Negative Samplingmethod (SGNS), which is commonly referred
to as WORD2VEC. The interesting part about SGNS is that it approximates a
word-association matrix using logistic regression. This means that association
measures and word embeddings are two different methods of measuring word
distribution in a corpus.
Because we are interested in more than simple pairwise relationships

between words, we then expand these word similarity methods by using k-
means clustering to create discrete groups of related words (Section 3.6). And,
finally, we end this section by raising an ethical problem that is created by mod-
els of word association (Section 3.7): What happens when word embeddings
capture stereotypes in a way that leads to biased associations?

3.2 Measuring Corpus Similarity
Corpus similarity is the broadest conception of a comparison model, telling us
the overall similarity between two corpora or sources of text data. Let’s take
register as an example of why corpus similarity is important. Register refers
to the linguistic properties of a corpus that are influenced by the context of

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 41

Table 12 Accuracy of corpus similarity measures for predicting register

Code Language Accuracy Feature Type

ara Arabic 94.6% Word Unigrams
ell Greek 100% Character 4-grams
eng English 93.3% Character 4-grams
fra French 96.6% Word Unigrams
hin Hindi 96.6% Character 4-grams
hun Hungarian 97.3% Character 4-grams
ind Indonesian 100% Word Unigrams
jpn Japanese 83.3% Spaceless Char Bigrams
por Portuguese 97.3% Word Unigrams
rus Russian 98.0% Character 4-grams
spa Spanish 97.3% Word Unigrams
zho Chinese 96.6% Spaceless Char Bigrams

production. For example, context is an important factor which drives the dif-
ferences between news articles or political speeches or novels (Biber, 2012).
These different linguistic properties are not caused by the content or the author
of a text, but by the context of production.
For example, let’s consider three distinct registers: social media (represented

by tweets), nonfiction articles (represented by Wikipedia), and the web (a het-
erogenous register). Each of these sources of data, from unique contexts, will
be characterized by specific lexical choices or grammatical patterns. We could
use a text classifier to distinguish between registers. However, we are more
interested in understanding relationships between different contexts of usage.
So, instead of a discrete classifier, we will put together a scalar measure for
how similar two corpora are (Kilgarriff, 2001).
We could validate this kind of measure by using a threshold to predict which

register a given sample belongs to. For example, in Table 12 we show the
accuracy for classifying these three registers across twelve languages. In this
case, we are using a corpus similarity measure together with a threshold for
predicting whether two samples are from the same or different registers.
Overall, this table shows that we havemade very good predictions. And these

good predictions indicate that the corpus similarity measure is capturing the
difference between registers. The prediction accuracy is not our main focus, but
it does provide a validation for our continuous similarity measure. As before,
this example is reproduced in the code notebook for this section. You can further
explore the measures across a number of other languages.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

42 Corpus Linguistics

How do we find the similarity between two corpora? The basic idea is to
convert the corpora into a shared vector space and then measure the similar-
ity between the resulting vectors. The vector space is again based on word
frequency. But now the feature set is chosen by taking the most frequent vocab-
ulary items in each language. We use 5,000 features, creating a vector of 5,000
dimensions or columns to represent each corpus. The final step is to calcu-
late similarity using Spearman’s rho, a measure of the correlation between two
vectors.
This family of similarity measures has been shown to be quite robust across

languages (Dunn, 2021). As we see in Table 12, languages do differ in the spe-
cific features that best represent them: Some languages work well with word
frequencies and others with character n-gram frequencies. A character n-gram
is a sequence of characters within a word. So, for example, goin and oing are
both character 4-grams derived from the word going. The specific configu-
rations for each language are reproduced from an existing Python package.17

This means that there is a stable vector space for each language that contains
the same vocabulary of features regardless of the corpora being compared.

rs = 1 −
6
∑
d2i

n(n2 − 1)
(3.1)

In the equation for the Spearman correlation, rs, we have first converted the
frequency vector into rank order: the most frequent word in a corpus is 1 and
the second most frequent word is 2 and so on. The variable n is the total number
of features, here 5,000. And, for each word in the vocabulary, d2i is the squared
difference between that word’s rank in each corpus. For example, if the feature
were is the 12th most frequent in one sample and the 20th most frequent in
another, the result is (12− 20)2 = 64. The more similar the word ranks are, the
closer to 1 the overall value becomes.
For a text classifier, we convert each sample into a shared vector space and

provide those vectors, together with their gold-standard labels, to the classifier.
But here we compute the similarity directly from the frequency ranks them-
selves. On the one hand, logistic regression learns a weight for each feature
in the vector space, giving some features more importance overall. Here, we
give each feature the same influence. On the other hand, both methods con-
vert a vector of feature values (frequencies) into a single scalar value (here,
similarity).
Because this measure is continuous, we do not require fixed boundaries

between registers. This is helpful because we might see, for example, movie

17 https://github.com/jonathandunn/corpus_similarity

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://github.com/jonathandunn/corpus_similarity
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 43

subtitles that mimic the language of news articles, or news articles that
mimic conversational speech. Thus, a continuous measure is more helpful for
understanding networks of relationships within and between corpora. Because
this measure does not require training data, we are not confined to the registers
that we started with. This is helpful because we can continue to use a corpus
similarity measure on new kinds of data in a way that would not be appropriate
with a text classifier.
You will notice that, previously, we focused our vector representations on

a specific part of the linguistic signal. For syntactic patterns, we used func-
tion word n-grams or the frequency of constructions. For lexical patterns, we
removed stopwords, joined phrases using PMI, and highlighted distinctive terms
using TF-IDF. But here we have joined lexical and syntactic features into a single
vector by relying on the 5,000 most frequent words. This works very well for
corpus similarity, and for register variation in particular, because the context of
production influences both lexical and syntactic choices. Finally, the Spearman
correlation focuses on difference in frequency ranks, rather than the presence
or absence of specific features.
Although this corpus similarity measure is quite accurate across languages,

its central tendency varies significantly. For example, samples in Swedish have
an average similarity that is much higher than samples in Estonian. When we
compare registers across languages, as in Figure 7, we convert each language
into a standardized space using the z-score. The equation for this, shown below,

1.5

1.0

0.5

ara
ell
eng
fra
hin
hun
ind
jpn
por
rus
spa
zho

tw_tw cc_cc wk_wk tw_wk

Registers

S
im

ila
rit

y

tw_cc cc_wk

0.0

−0.5

−1.0

−1.5

Figure 7 Visualization of corpus similarity by register and language

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

44 Corpus Linguistics

is simply the population mean (all similarity scores for this language) sub-
tracted from a given sample’s score and divided by the standard deviation for
the population (again, all similarity scores for this language). This converts
each language’s similarity values into a standard range. This, in turn, allows us
to visualize patterns across many languages. The mean is now 0; values above
the mean are more similar than average and values below the mean are less
similar than average.

z =
(x − µ)
σ

(3.2)

Figure 7 shows the standardized similarity values for many samples across
twelve languages. There are three sets of same-register pairs (TW_TW, CC_CC,

WK_WK) and three sets of cross-register pairs (TW_WK, TW_CC, CC_WK). Here,
TW refers to social media data, CC refers to web data, and WK refers to
Wikipedia data. Each dot is one language, averaged across many pairs of sub-
corpora. Values toward the top (1.5 in standardized space) are very similar,
while values toward the bottom (-1.5 in standardized space) are very differ-
ent. Languages are represented by the color of the dots. For example, Arabic is
pinkish.
First, we see that same-register pairs are clearly distinguished from cross-

register pairs; this is why we can predict whether two samples come from
the same register with such high accuracy. Second, we see that relationships
between registers vary. For example, tweets constitute the most self-similar
register. And tweets and Wikipedia articles are the most dissimilar, with the
lowest values. This means that these two registers are the furthest apart, a rela-
tionship that holds across all languages. Finally, web data seems to be the most
heterogeneous, with the broadest dispersion of similarity values.
In addition to relationships between registers, we can also use corpus sim-

ilarity measures to represent the homogeneity of a data set. How stable or
consistent is a particular corpus? The idea here is to break a much larger cor-
pus into smaller chunks and measure the similarity between random pairs of
chunks. If a corpus is quite consistent, the similarity values are high and densely
centered around the mean. But, if a corpus is heterogeneous, the similarity
values are lower and have a higher variance.
This is a useful way to validate our data, becoming important as we come to

rely on very large digital corpora. We visualize the homogeneity of tweets for
four languages in Figure 8 using box plots. Here we see that Arabic and Greek
are much more densely clustered than English and French, showing a narrower
range of variation. English is one of the most heterogeneous languages, likely
a result of the diverse population of dialects and varieties that contribute to its

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 45

fra

−2 −1 0

Self-Similarity

1 2

eng

ell

ara

Figure 8 Visualization of corpus homogeneity for Twitter by language

digital usage. In this case, however, the social media data is restricted to a single
country in order to control for geographic variation.
This section has looked at a scalar measure for comparing corpora, which

we have used to explore different digital registers. This measure creates a
frequency-based vector space to represent each subset of a corpus and then
compares these vectors using rank correlation. The lab for this section shows
how to work with corpus similarity measures across many languages.18

3.3 Measuring Document Similarity
Now let’s move beyond corpus similarity and look at a smaller unit of analy-
sis: documents. The question here is, which texts are the most similar? Given
our approach to representing different parts of the linguistic signal as a vec-
tor, similarity here can mean three different things: content-based similarity
(reviews of the same hotel), author-based similarity (reviews written by the
same kind of tourist), or sentiment-based similarity (very favorable reviews of
different hotels). The linguistic signal, a text, carries all three pieces of informa-
tion. And so when we measure document similarity, we start by using exactly
the same representations that we have used for text classification. For content,
we represent a text using TF-IDF weighting with stopwords removed and PMI to

18 Lab 3.2 –> https://doi.org/10.24433/CO.3402613.v1

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

46 Corpus Linguistics

find phrases. For authorship, we represent a text using function word n-grams.
And, for sentiment, we represent a text using positive and negative sentiment
words.
Previously, we used content features to classify tweets from different cities,

stylistic features to classify different nineteenth-century writers, and sentiment
features to classify hotel reviews. We will use those same features and corpora
here. But, instead of training a classifier using predefined discrete labels, we
only measure the pairwise similarity between documents. Those documents
which are closer in vector space are more similar. Those which are further apart
in vector space are less similar. When we create a vector space that highlights
syntax or semantics, we focus document similarity on that part of the linguistic
signal.
We will use a common metric called Euclidean distance to measure how

far apart two vectors are. You will notice that distance and similarity are the
same measure from different perspectives, depending on whether 0 means very
little overlap or very little difference. So, we calculate the distance between
vectors representing our texts in order to measure the distance between the
texts themselves. Distance is different from a measure of correlation such as
that which we used for corpus similarity, but the overall paradigm of comparing
vector representations is the same.
Let’s say we have two documents, A and B. We are using sentiment words,

so for each document we have a vector of a few thousand frequency values.
These vectors are like rows in a table. Each column is a word like enjoyed or
endured. The formula for calculating distance in this context is shown below.
We take the difference between each column and square it. So, we calculate
how many times enjoyed occurs in document A (2) minus how many times
enjoyed occurs in document B (1). The result is 1; and 12 is still 1. Then we
add all these columns together and take the square root. When the formula says
An, it means that we do this same pairwise comparison across every column in
our table of vectors.

distance (A,B) =
√
(A1 − B1)2 + (A2 − B2)2 · · · + (An − Bn)2 (3.3)

In other words, the method for calculating Euclidean distance is the same for
5 features or 5,000 features. Squaring each comparison eliminates the direction
of the distance (positive or negative). Features with a higher value (like distinc-
tive words when we use TF-IDF), have more impact on the overall measure. For
example, if tulip occurs zero times in one document and thirty-four times in
another document, this large gap will have a large influence: (34−0)2 = 1,156.
A measure like Euclidean distance allows more frequent items to have more
influence on the final similarity value.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 47

Table 13 Author similarity results

Target #1 #2 #3 #4 #5

Bennett Bennett Bennett Bennett Bennett Bennett
Abbott Abbott Abbott Abbott Abbott Abbott
Altsheler Altsheler Altsheler Altsheler Altsheler Altsheler

Table 14 City similarity results

Target #1 #2 #3 #4 #5

Calgary Calgary Calgary Calgary Calgary Calgary
Brisbane Melbourne Adelaide Perth Adelaide Brisbane
Washington Wash. Wash. Wash. Wash. Wash.
Mumbai Mumbai Mumbai Bengaluru Mumbai Mumbai

Euclidean distance gives us a single measure of similarity for any two doc-
uments. And yet there are thousands of dimensions in the case of sentiment
analysis. So our high-dimensional vector is being compressed into a single dis-
tance measure. This might be reductive if we only had two texts. But we have
a whole network of relationships, because we can measure the linguistic dis-
tance between every pair of texts. The more samples (documents) that we have,
the more we know about each one: We also know about the relationships that
document has with every other document.
Let’s start with authorship and style. We have seen that we can classify

nineteenth-century writers quite well, making highly accurate predictions using
function word n-grams. What happens if we try to search for similar writers
using Euclidean distance to compare texts?
We randomly choose one sample, one chapter of a book. We end up with

five other chapters written by the same author. This works, in Table 13, for
Bennett, Abbott, and Altsheler. As always, you can explore this further in the
code notebooks. This consistency will likely not always be observed for each
sample, but the overall trend is clear.
Next we look at cities. We used a text classifier to predict which city tweets

are from. If we use similarity measures based on the same content features,
what would we find? Here in Table 14 we have four examples: In two cases
(Calgary and Washington, DC), each of the five most similar samples come
from the same city. In the other two cases, we have imperfect predictions that
reveal larger patterns. For example, the most common samples for Brisbane

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

48 Corpus Linguistics

Table 15 Sentiment similarity results

Target #1 #2 #3 #4 #5

HIGH HIGH HIGH HIGH HIGH HIGH

LOW LOW LOW LOW LOW HIGH

(in Australia) are other cities from Australia. And the most common samples
for Mumbai are Mumbai and another Indian city, Bengaluru. This shows why
similaritymeasures are important:We can ask questions that go beyond discrete
boundaries to find out what the relationships are between samples.
Does the same pattern occur with sentiment analysis? Here we use positive

and negative words to find the most similar hotels based on reviews. We dis-
play the target with its most similar hotels using their labels: HIGH or LOW. We
see, in Table 15, that the documents which are most similar from a linguis-
tic perspective are also the most similar given their properties in the external
world.
To summarize, we have converted documents into vector space, focusing

on content, style, or sentimeant. And then we have used Euclidean distance to
search for similar documents in that vector space, given an exemplar that we
want to start with. This idea of startingwith an exemplar is an approximation for
how humans structure categories. Our lab for this section shows how to search
for the most similar documents given a particular type of representation.19

3.4 Measuring Word Similarity Using Association
The methods described above tell us about the similarity between two doc-
uments in content, style, or sentiment. How could we measure the similarity
between words, a much smaller span of language? In this section we look at
association measures, a way of measuring the probability that a sequence of
words occurs together. The basic idea is that words which are likely to occur
together in a corpus have an association, and this association reflects a shared
meaning or an idiomatic meaning.
We previously used Pointwise Mutual Information, or PMI, to find phrases.

But PMI does not take directional information into account. For example, con-
sider the phrase of course in (12). The probability of course given of is rather
small from left to right, because of is quite common and occurs with many
other words. But the probability of course given of is quite high from right to

19 Lab 3.3 –> https://doi.org/10.24433/CO.3402613.v1

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 49

Table 16 Variables for calculating the ∆P

Y Present (YP) Y Absent (YA) TOTALS

X Present (XP) a b a + b
X Absent (XA) c d c + d

TOTALS a + c b + d

left, because course is not preceded by a wide variety of words. This means
that the left-to-right association is rather low, but the right-to-left association
is rather high. The PMI does not capture this distinction.

(12) The game will of course be finished by that time.

Here we introduce a measure of association that captures the probability
that two words co-occur from both directions, called the ∆P (Dunn, 2018c;
Ellis, 2007; Gries, 2013). This probability is based on the frequency of words
observed in a corpus, as shown in Table 16. Taking of course as our example,
the variable a represents the frequency of those two words together. The var-
iable b represents just of on its own and c represents just course on its own.
To control for the size of the corpus, a final variable d captures the number of
words in the corpus that do not include of course. A further advantage over the
PMI is that negative or very low values also have an interpretation: Two words
are likely not to occur together, to repel each other.
Given these frequency-based variables, the two variants of the ∆P are shown

below. In the first case, we take the probability that course follows of adjusted
by the probability that some other word follows of. And, in the second case, we
take the probability that of comes before course, adjusted by the probability
that course is preceded by some other word. Taken together, these two mea-
sures provide a more nuanced view of the association between of and course,
including the variety of other options that are available.

∆PLR =
a

a + c
− b
b + d

(3.4)

∆PRL =
a

a + b
− c
c + d

(3.5)

We start by using the ∆P to find the most associated phrases in a corpus.
Table 17 shows association from the corpus of tweets and web pages (on the
top), contrasted with the corpus of nineteenth-century books (on the bottom).
In addition to the left-to-right and right-to-left variants, we show a Frequency
value, which represents the number of occurrences. A table like this is a simple
way to find collocations in a data set. Here we are looking at words with a

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

50 Corpus Linguistics

Table 17 ∆P Association, phrases with high left-to-right attraction

Corpus Phrase LR RL Freq

Tweets+Web luther vandross 0.93 0.05 218
Tweets+Web white flippered 0.92 0.00 12
Tweets+Web a nutshell 0.90 0.00 2,074
Tweets+Web lucille lortel 0.99 0.04 22

PG Books king bucar 0.99 0.00 20
PG Books de mauves 0.92 0.00 226
PG Books the huberts 0.91 0.00 92
PG Books a goner 0.96 0.00 132

Table 18 ∆P association, phrases with high right-to-left attraction

Corpus Phrase LR RL Freq

Tweets+Web blackstorm labs 0.00 0.92 13
Tweets+Web doled out 0.00 0.95 173
Tweets+Web kumsusan palace 0.00 0.99 44
Tweets+Web specialise in 0.00 0.90 2,576

PG Books interdigital pits 0.00 0.99 18
PG Books regardless of 0.00 0.90 6,946
PG Books addiction to 0.00 0.90 276
PG Books walmington square 0.00 0.99 16

high left-to-right but low right-to-left association. This includes names (luther
vandross) but also phrases (a nutshell, a goner).
While the PMI makes no distinction between directions of association,

Table 18 now shows phrases with the opposite configuration: a high right-
to-left association. Here we see different types of names (blackstorm labs,
walmington square) and different types of phrases (doled out, regardless of).
This shows the greater nuance that we get by using the ∆P.
Our first approach to vector semantics is to use this matrix of association

values to represent each word. Theses tables are sparse matrices because we
are only including pairs with a high value; a complete matrix would show the
association between every pair of words. This, in fact, is the starting point for
popular approaches to vector semantics like latent semantic analysis (Landauer,
Foltz, & Laham, 1998) or global vectors (Pennington, Socher, & Manning,
2014). If we are interested in phrases and collocations, association measures

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 51

applied to multi-word sequences, as we have done here, are a useful tool.
But, if we are interested in finding relationships between words, a network of
association values is the next step.
When we calculate an association matrix, we look at frequencies for the

entire corpus for each possible pair of words. This means that the resulting
matrix is stable: We always get the same output when we observe the same
corpus. But it alsomeans that we have to keep a very large number of very infre-
quent pairs in memory, making this approach consistent but resource intensive.
In the lab for this section, we work with the ∆P measure in more detail.20

3.5 Measuring Word Similarity in Vector Space
We have been representing language (words, documents, corpora) as vectors
in order to compare and model those vectors as a proxy for comparing the
language itself. When we do this with words, we call it VECTOR SEMANTICS. The
basic idea is that the relationships between words that we expect from lexical
semantics (synonymy, meronymy, metonymy, etc.) should now be captured in
vector space. Because these vectors are based on co-occurrences, we also call
this DISTRIBUTIONAL SEMANTICS. But the idea is the same: Words that have the
same distributions, that occur in the same contexts, should have the same vector
representations. This means that, again, the vector representation is a proxy that
indicates which words have similar meanings.
In practice, vector semantics is more limited than lexical semantics. These

methods tend to be quite good at finding which words are related to one another.
But comparing vectors, for example using Euclidean distance, does not allow
us to distinguish between different types of relationship like synonymy and
meronymy. You will notice as we work through lists of related words that these
lists represent many distinct types of semantic relationships.
The challenge here is to measure the distribution of words. Instead of

looking at the entire corpus at once to calculate an association matrix, the
word2vec algorithm trains a logistic regression classifier using stochastic gra-
dient descent. This is the same architecture that we used previously for text
classification; but instead of using logistic regression to make discrete predic-
tions, we are using its weights as part of vector semantics. More precisely, we
are discussing the Skip-GramNegative Sampling variant of word2vec (Mikolov
et al., 2013). There is a close theoretical relationship between this approach to
vector semantics and approaches based on a matrix of association values (Levy,
Goldberg, & Dagan, 2015).

20 Lab 3.4 –> https://doi.org/10.24433/CO.3402613.v1

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

52 Corpus Linguistics

Let’s say we have a very large data set, like all lead paragraphs from
The New York Times over a period of eighty-five years. This provides mil-
lions and millions of sentences, enough to estimate the distribution of even
relatively infrequent words. The word2vec algorithm is based on predicting
co-occurrence: What words occur within five words to the left and right of
CAT? For example, in (13a) through (13c) the target word is shown in bold and
the words within the context window are shown in italics. The basic idea is to
train a model to predict which words fall within that context. So, the goal is
to predict that stray and person and training are words that go along with the
target word CAT. You will notice that many of the words in the context window
are actually stopwords (function words). Most implementations of word2vec
remove stopwords before finding the words inside the context window. This is
a method used to focus on the content of the sentence rather than its structure
or style.

(13a) Our neighborhood has an increasing number of stray [cats].
(13b) My aunt is a really big [cat] person; she just loves them.
(13c) We did a good job of training the [cat] to not scratch the couch.

The goal is to train a logistic regression classifier that predicts which words
will occur in the context window (i.e., which words will show up in italics).
The positive class is made up of those words which are actually observed in the
context for each word. The negative class is made up of randomly chosen words
which do not occur in the context window. This is called negative sampling. In
general, the algorithmworks well when trained with a large number of negative
samples for each positive sample. The reason is that most words do not co-
occur, so there are more negative examples than positive examples in a full
corpus.
When we created previous vector representations, each dimension or col-

umn represented a particular vocabulary item: a word, an n-gram, a sequence of
characters, or a construction. But in word2vec the dimensions do not represent
any particular linguistic feature. They are purely properties of the model, logis-
tic regression. The equation for logistic regression is repeated below, where
the prediction z is a dot product of the features and the feature weights. In
word2vec, each word is represented by a set of feature weights. During train-
ing, these weights are optimized to make predictions about the context of the
word. After training, these weights are exported as the vector representation for
that word.

z = w · x + b (3.6)

This is a form of semi-supervised learning. The model is trained to make
predictions about a ground truth, but the ground truth does not require any

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 53

annotation or labeling. And we are not directly interested in the prediction task
itself, at least not to the same degree that we are interested in the final word
embeddings that come from the feature weights.
What exactly is the underlying prediction task here? The model needs to

ensure that the probability of the positive examples (which actually occur) is
higher than the probability of the negative examples (which we sampled ran-
domly from the vocabulary). When the predictions are incorrect, the stochastic
gradient descent algorithm changes the feature weights (the future word embed-
dings) to correct that error. In other words, the prediction task for the classifier
is semi-supervised because it is learning to predict a quality that is not what we
are actually interested in.

Prediction = P(target|context) (3.7)

How dowe know the probability that is referred to above, that a target word is
observed given a specific context? The skip-gram negative sampling algorithm
calculates the similarity between the current vector (the feature weights) for
both the target word and the context words (where the context words include
both the positive and negative examples). We talked about Euclidean distance
in Section 3.3; this algorithm uses an alternate distance measure called cosine
distance. This is the dot product of each current word embedding: The feature
weights are multiplied together, element by element. The cosine is normalized
by the multiplied absolute values of the two vectors to reduce the impact of
very large values. This is important because otherwise the word embeddings
for very common words like the or seemswould be given more weight than the
embeddings for rare words.

cosine (t,c) = t · c
| t | ∗ | c | (3.8)

So the cosine distance between the target word (CAT) and each of the context
words (real positive examples and fake negative examples) is used to estimate
the probability that they co-occur. The goal is for the positive examples to end
up with a high probability and the negative examples to end up with a low
probability. As with logistic regression before, the sigmoid function is used to
convert this probability (the cosine similarity) into a prediction. Values above
0.5 are positive predictions and values below 0.5 are negative predictions.
Let’s compare this with an association-based approach to vector semantics.

For a word association matrix, we take the entire corpus into memory and cal-
culate the association (probability) for each possible pair of words based on
observed frequency. If we are working with a very large corpus, this becomes
a computationally expensive task. The word2vec algorithm approximates this

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

54 Corpus Linguistics

Table 19 Words similar to sonnets

Target #1 #2 #3 #4 #5

sonnets verse poems Aeschylus poem psalms

same association matrix by using logistic regression to make predictions about
word contexts. But, importantly, the algorithm only needs to consider one
sentence at a time. This means that a single machine can process very large
corpora. However, the side effect of this efficiency is that word2vec is less
stable. In other words, given a corpus, we will always get the same word asso-
ciation matrix. Nonetheless, we will not always get the same word embeddings
(Hellrich, Kampe, & Hahn, 2019). For instance, each pass will have entirely
different words used as negative examples for the classifier.
We are going to explore word embeddings by using cosine distance to search

for the most similar words. But first we have one more problem to think about.
You will notice that vector semantics is based entirely on strings: Every unique
string is assumed to be a single word. So, for example, I work at a TABLE. But
in a meeting I might TABLE a new motion. Or I’m feeling FINE right now. But
only until I get another library FINE. The problem is that word2vec gives us a
single embedding even though these strings are actually different words.
Here we use part-of-speech tags, like noun and verb, to distinguish between

different word senses. These are the same tags that we trained a text classifier to
predict in Section 2.4. So we start by using a part-of-speech tagger to label each
word according to its grammatical category. Then we train word embeddings
that distinguish between fine_N and fine_ADJ. That makes our vectors a better
representation of word meaning. We show these tags in the code notebooks,
but for the sake of space they are removed here.
Now, back to our problem. Let’s search to find out which words are the most

similar. The target word in Table 19 is abstract, sonnets. And the most similar
words are other abstract words from the same domain. These words are abstract
in the sense that their definition is entirely amatter of social construction (Dunn,
2015). In addition, we have a nonabstract word, a named-entity,Aeschylus, who
is associated with poetry. This is a good example of the kind of relationships
that word2vec captures: words from the same domain, but with a variety of
distinct lexical semantic relationships.
Here in Table 20 is another example, words similar to fisticuffs. Some of

these are adjectives and some verbs; one is a noun (brawls). In this case, we
have different paraphrases or synonyms, words that could be used in the same
context with slightly different nuances.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 55

Table 20 Words similar to fisticuffs

Target #1 #2 #3 #4 #5

fisticuffs hairpulling taunting trashtalking fist-swinging brawls

Table 21 Word similarity by corpus

unfairness #1 #2 #3

NYT irresponsibility hypocrisy excessiveness
Congress inconsistency absurdity inequality

isolationist #1 #2 #3

NYT antidemocratic antiwashington unilateralist
Congress defeatist antimilitary internationalist

Is there a single vector representation for each word regardless of the cor-
pus that we use for training? The answer is no, which is what we expect given
variation in registers and dialects and individuals. Here in Table 21 we con-
trast two words, using embeddings drawn from the The New York Times and
embeddings drawn from congressional speeches (both corpora cover the same
period of time, 1931 to 2016). The first target is unfairness. The news arti-
cles find related words like hypocrisy, but the congressional corpus finds more
abstract words like inequality, a slightly different focus. For the second target,
isolationist, we see a different range of words, each with a different semantic
relationship. Some are words with the opposite meaning (internationalist) and
some are words with a political spin (anti-democratic, defeatist).
The point of this section has been that we can use vector semantics, whether

from a word association matrix or from an algorithm like word2vec, to repre-
sent the distribution of words. The distribution is taken as a proxy for linguistic
properties of the word. And then wemeasure the distance between words in this
vector space, allowing us to search for the most similar words in the same way
that we previously searched for the most similar documents. These methods
are useful for providing domains of related words, even though these domains
in fact represent a large number of distinct lexical semantic relationships. In
the lab for this section we practice working with word embeddings in more
detail.21

21 Lab 3.5 –> https://doi.org/10.24433/CO.3402613.v1

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

56 Corpus Linguistics

3.6 Clustering by Similarity
We have been working to measure the similarity between words and documents
and corpora as a way of avoiding the discrete categories that a text classifier
requires. But so far we have been looking at pairwise similarities, even when
we have access to vector semantics given word embeddings. This means that,
in most contexts, we need to consider a very large number of pairs as part
of our analysis. Let’s expand pairwise similarity across an entire data set by
using Euclidean distance to find clusters of related items, focusing on clusters
of related words. This means that we can create groups of words that represent a
single semantic domain. These clusters are much like the categories produced
by a text classifier, except that we as linguists do not define the categories.
Instead, we use unsupervised learning to find the clusters.
We will use the k-means clustering algorithm throughout our examples. The

algorithm’s goal is to find groups of words that minimize within-cluster vari-
ance. This means that the words inside a cluster are more similar to each other
than they are to words outside the cluster. So we are searching for those groups
of words that are most homogeneous.
We define what we mean by homogeneous using Euclidian distance. We

start by calculating the centroid for each cluster, the exact middle point. This
centroid is like the best example of a category. So, a carrot is a really good
example of a vegetable and it sits right in the middle of the category VEGETA-

BLE. For k-means, the center or prototype for each category is the centroid, the
exact middle based on the distances between all the words in that cluster. While
there might not be a word in the exact centroid position, we can find the word
which is nearest to that centroid position as the prototype or exemplar for the
cluster.
But how does the algorithm actually find clusters? First, as shown in

Table 22, we initialize the algorithm with our best guess. So we try a couple
random clusterings and find out which works best. This clustering becomes the
starting point. Then k-means has two basic steps during each iteration. The first
step is to reassign each word to the nearest centroid. So if a lemon is closest to
the centroid VEGETABLE, then we add it to the VEGETABLE cluster. The second
step is to recalculate the centroid based on all the words that are now in that
cluster. So, if we add lemon to the VEGETABLE cluster, then that category has
been changed, potentially creating a new centroid.
These two simple steps (both based on calculating Euclidean distance) are

repeated over and over many times. For each turn, we make a few changes,
flipping a word from one cluster to another. We finally stop the algorithm when
we stop making any significant changes.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 57

Table 22 Pseudo-code for k-means clustering algorithm

Variables

define tolerance = The amount that cluster assignments have
changed this cycle

define word = A word represented in vector space using word2vec
define cluster = A group of words centered around the mean or centroid
define centroid = The prototype or central example that represents

the center point of the cluster

Algorithm

Loop WHILE tolerance is below our threshold:
Step 1 FOR each word:

Assign word to the nearest centroid using
squared Euclidean distance

Step 2 FOR each cluster:
Recalculate the centroid as the mean of all words
that are now in the cluster

The only disadvantage to k-means is that we have to set k in advance: How
many clusters do we want? If we want ten clusters, we have to tell the algorithm
that k = 10. If we want 100 clusters, we have to tell the algorithm that k = 100.
So, for a text classifier we have to define what the categories are. But for
k-means we only have to say how many categories we want to end up with.
Most words havemultiplemeanings, some ofwhich are completely different.

For example, the noun table is a place to put things but the verb to table is
about the formality of including an issue on the agenda for a meeting. Word
embeddings, by default, are unable to distinguish between these word senses.
As described in the previous section, we can use a part-of-speech tagger that
we have already trained to help distinguish between syntactic categories; but
this still does not account for polysemy.
To a linguist, different forms of a word like running vs ran vs run are still

the same word. Each formmarks different properties like tense and aspect. But,
from a computational perspective, each of these word forms has a different
embedding (because they are each different strings). So while table and table
might be conflated into a single row, ran and run are divided into separate rows.
Our first example cluster, from embeddings trained from the corpus derived

from The New York Times, is shown above in Table 23. This is a good exam-
ple of how word embeddings together with k-means can produce semantic

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

58 Corpus Linguistics

Table 23 Semantic domain 1, from news articles

living dining kitchen garage
pool whirlpool bath terrace
deck fireplace ceilings floors
renovated remodeled patio porch
maids doormen maintenance concierge

Table 24 Semantic domain 2, from news articles

medical medicine clinical physicians
psychiatry pediatric dental dentistry
psychiatric pediatrics orthopedic pathology
gynecology obstetrics cardiology oncology
surgery neurology internship radiology
ophthalmology dermatology immunology urology
anesthesiology gastroenterology hematology gynecological

domains, here the domain of HOUSE. We see different types of rooms, living vs
dining, and different features, like pool and terrace. But some of these words
are about the condition of the house: renovated and remodeled. And others
are about the staff of a house: maid and doormen. From a linguistic perspec-
tive, these words are related to one another but account for a range of unique
semantic relationships.
In our second example, in Table 24, we see different aspects of a MEDICAL

PRACTITIONER domain. Some of the terms capture different fields of medicine:
neurology vs cardiology. We also see different forms of the same concept, like
psychiatry and psychiatric. Again, these examples show us that we are working
with a broad semantic domain, not with specific lexical relationships. The lab
for this section explores in more detail the problem of how to cluster words.22

3.7 Ethics: Model Discrimination
What happens if our models learn to discriminate by picking up negative
stereotypes? Think about this: Vector semantics assumes that the distribution
of words in a large corpus tells us what those words mean. So, dog occurs
in contexts that include words like feed and pet and train and walk. But
what if some genders (like he/his/him) are more likely to occur in texts about

22 Lab 3.6 –> https://doi.org/10.24433/CO.3402613.v1

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 59

computer science than other genders (like she/hers/her)? What if some reli-
gions (like Islam/Muslim) are more likely to occur in texts about terrorism
than other religions (like Judaism/Jewish)? What if some groups (like African-
American) are more likely to occur in texts about crime than other groups (like
Asian-American)? We can pose three questions here.
First, does the meaning of a word actually come from the distribution or

usage of that word? If most texts about computer science do not include female
pronouns, does that imply masculinity is actually a part of the meaning of com-
puter science? This is an issue of discrimination that is not relevant when we
deal with words like shoe or library. So one ethical question is, which words
require an adjustment to make sure that our models do not learn discriminating
negative stereotypes?
Second, is the goal of corpus linguistics to learn from actual human behavior

or to learn from idealized human behavior? In other words, let’s say we learn
about the world from billions of tweets. And let’s say that discourse on Twitter
is sexist and xenophobic and racist. Would a model of vector semantics be
wrong to reproduce the actual human ideas that it encounters in a corpus? In
other words, is the underlying problem model discrimination or is this simply
a reflection of human discrimination?
Third, does every word have a single, most basic meaning? The issue here

is that linguistic meaning involves both the speaker and the audience: How
do individuals interpret this or that word? Many cases, like shoe or library,
may not have any significant individual variation. A dog is a dog is a dog.
Thus, a single vector representation that covers many different populations of
speakersmay suffice. However, a word embedding, for example, is based on the
assumption that there is a single meaning for each word. And we can discover
that one true meaning if we analyze enough texts. But if there is variation across
populations, then more data will lead to more noise. For example, there are
ideas that people fight about, like freedom and justice. We would end up with
very different distributions for these words if we compared, for example, Fox
News and The New York Times. The population of speakers that we use for
training influences our final representation of word meaning.
Let’s make this discussion less abstract by comparing some word classes that

we get using word2vec with k-means clustering, as before using data from The
New York Times. Here in Table 25 is our first example of a word class. These are
all nouns from the semantic domain of TRAVEL. Some words are neutral, like
trip and travel. Other words depend on the purpose of the travel, like commute
vs honeymoon. And still other words depend on our intentions in respect to the
destination, like stranded vs sojourn. So there is, again, a lot of variation in the
specific nuances that are encoded within this semantic domain.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

60 Corpus Linguistics

Table 25 Semantic domain 3, from news articles

trip travel journey tour
visit commute honeymoon pilgrimage
returning arriving depart stranded
vacation excursion detour sojourn
fly ride trek traveling

Table 26 Semantic domain 4, from news articles

hear listen laugh cry
smile whisper clap wave
kiss chat stare shout

reminisce tease cheer vent

weep spit yell scream
wince groan sneer boo

Table 27 Semantic domain 5, from news articles

victims prisoners refugees immigrants
civilians terrorists hostages foreigners
aliens asylum dissidents hijackers

detainees Iraqis Cubans Iranians

Here in Table 26 is another cluster that shows how these domains can con-
tain a variety of human emotions. Here we have words that involve a social
expression of emotion in some way, like laugh and smile. Some of these are
positive (smile), some neutral (chat), and some negative (weep). So this domain
is encoding many different emotions together.
The danger is that we start to encode properties that are actually stereotypes

of some kind. Here in Table 27 is a cluster that involves a domain of TERRORISM,
including words like victims and hostages and hijackers. But it also include
named entities like Iraqis and Cubans.
In other words, these domains are formed by association. And part of

the observed distribution of these words involves a negative stereotype. It
is important to remember that, although we talk about word embeddings as
vector semantics, the underlying method is closely related to measures of
association.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 61

Table 28 Semantic domain 6, from news articles

blacks negroes african_american
hispanic latino spanish_speaking

mexican_american asian_american chinese_american
cuban_american italian_american arab_american

poorer poorest lower_income
immigrant migrant foreign_born

sweatshops farm_workers undocumented
ghettos illiterate impoverished
uneducated exoffenders unemployed

And keep in mind that these embeddings come from The New York Times.
If we were working with social media data, we might be able to blame mis-
information or hate speech for these sorts of patterns. But the actual problem
is that distributional methods, without any adjustments, tend to amplify nega-
tive stereotypes, even if the original intent of the texts is to argue against those
stereotypes (Zhao et al., 2018).
Table 28 shows another domain from the same corpus. It includes groups

which are racial or ethnic minorities in the USA (blacks, hispanics). Keep
in mind that the corpus ranges from 1931 to 2016, so some terms are used
which have become less acceptable over time. Also included in this domain
are migrants, but not just any migrants: Specifically, it includes migrants
with a negative stereotype of some sort. And, at the bottom, also included
in this domain, are negative attributes: poorest, illiterate, uneducated, and
ex-offenders.
To be fair, this is not an exhaustive list of terms for this domain; it also

includes whites, for example. But it is clear that this domain comes from com-
paring minority groups with a majority categaory. And, whether or not the
original texts intend to support negative stereotypes, that is precisely what the
word embeddings pick up. Regardless of the overall argument that a partic-
ular document makes, the repeated association of words occurring within a
particular topic leads to the acquisition of these negative stereotypes.
The main idea in this section has been that computational models can acquire

negative stereotypes, partly from the texts used for training and partly from the
distributional methods that are used. In and of itself, a model like this could be
used to study the association of words. But the ethical problem comes when
we base more complicated models on the assumption that vector semantics

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

62 Corpus Linguistics

represents the meaning of words. The basic fact is that distributional semantics
represents a corpus, rather than either human cognition or some sort of exter-
nal reality. The more influence we give such models (for example, using them
for search engines or machine translation) and the less transparent the mod-
els become, the more we have incorporated discrimination into our linguistic
analysis.

4 Validation and Visualization
Wehave now seen how computationalmethods can be used to answer both cate-
gorization problems and comparison problems. If we want to use these methods
to answer linguistic questions, however, we need to give further attention to
how we can validate the answers that we get: How can we have confidence
in our results when we as linguists cannot individually verify all the corpus
data we rely on? Here we discuss how to report results using baselines to
provide context (Section 4.1) and how to ensure that our results are robust
(Section 4.2).We then turn our focus to visualizationmethods to further explore
our results, working with relational plots (Section 4.3), box plots and heat maps
(Section 4.4), and choropleth maps (Section 4.5). As before, we end this sec-
tion by considering the ethical implications for these computational methods:
Here we consider the influence that data availability has on the languages and
populations which we are able to study using computational methods.

4.1 Reporting Results for Political Speech Prediction
It is difficult to evaluate how well a computational model is performing in
isolation. For example, imagine that we can predict New Zealand English vs
Australian English when most samples are from the Australian dialect. This is
an imbalanced binary classification problem: imbalanced because the major-
ity class (Australian English) dominates and binary because there are just two
classes. Our baseline expectation for this dialect model would be higher than
for a model with twelve dialects (cf. Section 2.1) with an equal number of test
samples from each one. In other words, an f-score of 0.50 would be bad in the
first case but rather good in the second case. This means that when we evalu-
ate the performance of a model we need some method to contextualize the raw
accuracy measures.
In this section, we will be looking at the example of training a text classi-

fier to predict whether a congressional speech was given by a Republican or a
Democrat. When do we know that the classifier’s performance on this binary
classification problem is meaningful? To find out, we first establish a baseline
that we can use for comparison, to contextualize the results.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 63

0

500

1000

1500

2000

C
ou

nt

Year

2500

3000

3500
Party

D
R

1931
1936

1941
1946

1951
1956

1961
1966

1971
1976

1981
1986

1991
1996

2001
2006

2011
2016

Figure 9 Number of speeches by party, 1931 to 2016, House and Senate

The simplest baseline is to measure the accuracy of guessing the majority
class in every case. For example, Figure 9 shows us that, in the 1960s and
1970s, most speeches in congress were by Democrats. The red and blue bars are
overlaid, so that in this period there are about 2,000 speeches by Republicans
and about 3,000 by Democrats. So, we expect the classifier to work better for
Democratic speeches in that period. If 70% of speeches are from Democrats,
then our majority baseline for accuracy is 70%: the score we would have gotten
by predicting DEMOCRAT for each speech.
We have a very large number of options available for any given kind of cor-

pus analysis: Which representations do we use? Which models? Which data
set? Let’s say that we are wondering whether it is helpful to remove emojis
from tweets. Do they provide useful information or do they create noise? In
this case, we would evaluate the performance of these two different settings in
an A vs B evaluation: With all other choices the same, is MODEL A or MODEL B

better? This method allows us to systematically improve our models.
When we compare multiple models like this, however, we need to use a sta-

tistical test to determine whether the difference between MODEL A and MODEL B

is actually significant. Figure 10 shows our classification accuracy (the f-score)
for the period in question, 1931 to 2016. On the bottom, in blue, is the majority
baseline. This is what we would get by predicting the most common class. On
the top, in red, is the classifier’s f-score. This is what we actually got. So the
improvement over the baseline is the difference between the red and blue lines.
In this case, the difference between the two lines is quite clear. But we are not

always sure if there actually is a difference. The t-test is a way to measure how
significant the difference between two models actually is in a situation, like

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

64 Corpus Linguistics

0.3
1940 1960 1980

Year

F
-S

co
re

2000

Type
Baseline
Actual

2020

0.4

0.5

0.6

0.7

0.8

Figure 10 Party classification by year with majority baseline, 1931 to 2016,
House only

this, where we have many scores for each condition (actual classifier vs base-
line). Here the p-value is less than 0.001. That means there is a very significant
difference that we can have confidence in.
For classifying by political party, we take the party labels as our categories.

And then we train a classifier to tell us which speeches are written by Republi-
cans and which are written by Democrats. If we just do one classification, for
the entire twentieth century, that would not necessarily tell us anything about
nonlinguistic attributes of the speeches, like political polarization. But here we
train and test a model for each year: How distinct were the parties in 1933 and
how distinct were they in 1955?
When polarization is low, it should be more difficult to tell the parties apart

just from the text of speeches, because not every Democrat will be taking
exactly the same position. But, when polarization is high, it should be easier to
tell the parties apart using their speeches because every member of congress is
sticking closely to the party line. Thus, when we train a model for each year we
can use changes in the prediction accuracy as a proxy for political polarization.
The higher the prediction accuracy, the easier it is to tell the parties apart, the
more polarized the underlying parties are (Diermeier et al., 2011; Dunn et al.,
2016).
In Figure 10, we see that the classifier’s performance is well above the base-

line for every year, which tells us that the classifier is findingmeaningful textual
cues for party. But there are also wide fluctuations. Let’s test for two statistical
properties: First, are the actual performance and the majority baseline corre-
lated? Second, is there a significant difference between them? These results

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 65

Table 29 Relationship between majority baseline and classification accuracy

Pearson Correlation Correlation Significance T-Test P-Value

-0.114 0.293 0.001

in Table 29 show, first, that the classifier’s performance is significantly better
than the baseline. This is visually clear, but it is good to confirm that analy-
sis. But this also shows us that there is no significant correlation between the
majority baseline (based on which party is dominant in any given year) and the
classifier’s performance. This means that the distribution of speeches by party
is not a factor determining when the classifier works well and when it does
not work well. Thus, this indicates that there is a meaningful textual cue for
political party.
For these classification results, we have relied on content features (PMI for

phrases with TF-IDF weighting); we have refit these features and weightings
for each congress. In other words, the vocabulary for 1956 could be entirely
different from the vocabulary for 1976. This means, for example, that specific
named entities could be driving the prediction accuracy. In order to test whether
the feature space is specific to each year, we instead train classifiers that use
a single feature space that is fit across the entire data set. This removes the
importance of less common items like named entities because these entities
are unlikely to occur often across this entire period. Thus, we now have two
alternate versions of this model, each with slightly different features. And we
want to determine whether this choice makes a difference.
In Figure 11, the blue line represents classification performance for our orig-

inal system, and the red line represents performance when we use one set of
features across the entire period. We see that the two results are quite close.
From a visual inspection of the graph, we would think that there is no signif-
icant difference; but we need to be sure. Table 30 repeats the same metrics as
Table 29: correlation, significance of correlation, and significance of the t-test.
Here we see that the two sets of results are very significantly correlated and
that there is no significant difference between them. This means that the choice
of whether or not to refit the feature space for each congress has no impact on
the performance of the classifier. And this, in turn, tells us that the prediction
of party membership is not driven entirely by short-term entities like Nixon or
Watergate or Vietnam, which would be relevant for only a short time.
This section has contextualized the performance of a classifier by adding

baselines and comparing the performance of different systems. These meth-
ods allow us to determine whether our models are meaningful as a way to

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

66 Corpus Linguistics

Table 30 Relationship between classifiers with different feature spaces

Pearson Correlation Correlation Significance T-Test P-Value

0.866 0.001 0.641

0.60

0.65

0.70

0.75

0.80

1940

Type
Refit
No_Refit

1960 1980

Year

F
-S

co
re

2000 2020

Figure 11 Party classification by year by feature type, 1931 to 2016,
House only

systematically improve them. The lab for this section shows how to work with
party prediction in more detail.23

4.2 Ensuring Validity Using Box Plots
In Section 2.8 we discussed implicit bias, which occurs when a model picks up
on unrelated cues in a data set. This causes the model to make predictions that
look accurate but are actually based on incorrect generalizations. This is called
over-fitting. The basic idea is that the predictions of the model look accurate
on a specific test set; but the model has been selected to fit that test set. In
other words, if we had evaluated the model on a different set of examples, the
prediction accuracy could be significantly lower.
Over-fitting is especially a problem when we are working with smaller data

sets, like those that have been labeled by hand. If we only have a few hundred

23 Lab 4.1 –> https://doi.org/10.24433/CO.3402613.v1

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 67

examples in the test set or if one of the classes is especially rare, then our perfor-
mance is being evaluated on just a few examples. Let’s say that we hand-label
news articles by topic and there is a topic CORRUPTION that has only five exam-
ples. We put three examples in the training data and keep two examples in
the testing data. This means that our classifier is being evaluated on just two
examples of this class.
There are two techniques for dealingwith this problem: cross-validation and

validation sets. For a shallow classifier like logistic regression, which holds
all the data in memory at once, we use cross-validation. The basic idea here is
that we train and test many times, on different parts of the data. If we repeat our
process five times, it is called 5-fold cross-validation; if we repeat the process
ten times, it is called 10-fold cross-validation. In each case, we rotate what
data is used for training and what data is used for testing until every sample has
been used in the testing set once and only once. Thus, 10-fold cross-validation
uses a 90/10 training/testing split. It is important to realize that cross-validation
does not provide a single classifier, because we have actually trained and tested
many different classifiers. But it does provide a robust understanding of the
classifier’s expected performance.
The second technique is called a validation set. This is what we use for a

feed-forward network or other models that are trained incrementally on small
batches. Because these models take longer to train, and because it is harder
to estimate a stopping point, it would be impractical to train and test multi-
ple feed-forward networks. Instead, the best practice is to divide the data into
training, testing, and validation sets. Each training epoch is evaluated against
the test set. This means that the classifier is exposed to the testing data, indi-
rectly, many times throughout the training process. Thus, we also maintain an
independent validation set that is only used at the end of the process to provide
a final measure of model quality.
In this Element we have not focused on tuning or optimizing a model. But it

turns out that every model, like logistic regression or a feed-forward network,
has many parameters that need to be set. We must choose what values to use
for each of these parameters and the parameter settings can have a significant
impact on our final model. So, we often use significance testing to compare
different models with various parameter settings as a way of finding the best
options for a specific problem. Because there are so many choices, we would
overuse our testing data if we evaluated every possibility.
For this reason, it is also best practice to use a development set. This

means that we take a small bit of data to test the best model parameters.
Then, we use a separate training/testing set to evaluate the best models. Sub-
sequently, we evaluate the ultimate performance only once, using a reserved

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

68 Corpus Linguistics

Hotels

0.86

0.88

0.90

0.92

R
an

ge
 o

f F
-S

co
re

s

0.94

0.96

0.98

1.00

Cities Authors Dialects

Figure 12 Cross-validation results for four classification tasks

validation set. These are all tools used to avoid over-fitting. Another way to
think about these techniques is that they force us to replicate our own find-
ings. The validation set or the application of cross-validation means that we
as linguists have replicated our own studies before we submit them for peer
review.
Let’s see how this works in practice. In Section 2.1 we created a classi-

fier to distinguish between dialects of English using constructions as features.
And, in Section 2.2, we created a classifier to distinguish between different
cities around the world using lexical features, including named entities. In Sec-
tion 2.3 we made a model of authorship for nineteenth-century books using
function word n-grams. Finally, in Section 2.5 we predicted the average rat-
ing of a hotel using sentiment features in hotel reviews. How robust are these
results? Have we over-fitted in a way that inflates the performance of the classi-
fiers? In Figure 12 we take a second look, reporting the cross-validation scores
for each problem.
After doing this analysis, we see that all four experiments remain highly

accurate during cross-validation, much higher than the majority baseline (not
shown). Given the number of categories in these problems, the majority base-
line is well below 0.50. This kind of replication is important to give us
confidence in our results. The stable accuracy in all four cases shows that we
have modeled the linguistic phenomena in question (dialects or author style, for
example) rather than picking up on irrelevant cues and over-fitting the test set.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 69

The lab for this section shows how to use these techniques to further evaluate
our classification models to ensure validity.24

4.3 Unmasking Pseudonymous Authors Using Line Plots
Sometimes we need to visualize more than one model over time. For exam-
ple, we have seen that we can use a text classifier to identify different authors
using function word n-grams.Whenwework with books written by nineteenth-
century authors, this model performs verywell. But how robust is the classifier?
How deep are these individual stylistic differences? Let’s say that we have two
writers, A and B. Writer A never starts a sentence with And. However, Writer
B does so frequently. So, every text by Author A has zero sentences starting
with And, but Author B has hundreds of sentences starting with And. We might
have a classifier with perfect accuracy, but only because this one feature distin-
guishes between the two writers. We would not consider this model to be very
meaningful: There is a lot more to stylistics than just this one feature.
To measure robustness, we use a technique called unmasking (Koppel,

Schler, & Bonchek-Dokow, 2007), shown in Table 31. We train a logistic
regression classifier to identify each author in the corpus. That means each
feature in our vector, each function word n-gram, is getting a weight between
−1 and 1. We can use the feature weights to find out what the most important
features are. Unmasking works like this: We train and test the classifier many
times. But, each time, we remove the most predictive features, one for each
author. By the end of the unmasking process we have many different f-scores,
each based on fewer predictive features.
If the model is trivial, the f-score will plummet once those few features have

been removed. But, if the model is robust, the performance will decline very
slowly. In other words, the more our model of authorship is distributed across

Table 31 Pseudo-code for the unmasking algorithm

Unmasking Algorithm

Repeat for n cycles:

Step 1 Train Logistic regression to classify books by author:
The classifier provides feature weights for each author

Step 2 Select the most predictive features for each author:
Remove those features from the vectors that represent each text

24 Lab 4.2 –> https://doi.org/10.24433/CO.3402613.v1

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

70 Corpus Linguistics

0.0
5 10 15 20 5 10 15 20

0.2

0.4

0.6 Actual
Baseline

Generation = 1800 Generation = 1850

0.8

1.0

Figure 13 Unmasking performance for Authorship analysis

many different aspects of writing style, the more that model will remain accu-
rate when a few salient features are removed. You will remember that we often
include L2 normalization in the objective function, so that a model with extreme
feature weights is penalized for relying too much on a few predictive features.
The unmaskingmethod visualizes this same property: Howwell are themodel’s
predictions distributed across all the features?
Let’s take a look at what we find, shown in Figure 13. This is a facet grid

that shows the same experiment on two corpora: on the left with authors born
between 1800 and 1850, and then repeated on the right with authors born
between 1850 and 1900.We need a baseline to see if the results are meaningful,
so we also do authorship analysis in both contexts using just one author. We
choose one writer who producedmany books in the corpus: Horatio Alger (who
wrote ninety-six books) and Jane Abbott (who wrote seventy-nine books). We
use these two prolific authors to simulate an imposter: a single writer who is
pretending to be multiple writers. Thus, the baseline task is to classify different
books that they wrote, using our same function word n-grams. In the one case
we distinguish between different individuals, and in the other case we try to
distinguish between writings from the same individual.
Figure 13 shows a line plot with the f-score over different cycles of feature

pruning. The x axis is the number of feature pruning cycles, twenty-five in total.
The classifier starts with about 10,000 function word n-grams and, as we move
to the right of the figure, this is pruned by removing one feature for each author
each cycle. That means we have removed up to the top 600 features for the 24
authors in the 1850 corpus. What happens to performance? The y axis is the
prediction accuracy, measured using the f-score. This means that the higher the
line, the better the classifier works.
And we see that, for the real authorship task, the model is quite robust. The

performance remains strong until between cycles 12 and 15, then plummets

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 71

rather quickly. That is exactly what we expect to see, because the model of
writing style is based on many different grammatical forms. So getting rid of
a few isolated features does not reduce performance, until we have removed
so many features that the classifier is unable to contextualize the less common
features. In other words, we have identified the depth of this classifier, the point
where the performance drops off.
But, for the baseline task, we start off with a much lower f-score because it

is difficult to predict individual books when they were all written by the same
person. And then we see a rather sharp decline: Every time we remove a few
features, the f-score goes down dramatically. This sharp decline is exactly what
we expect when the model is not robust. In other words, this validation method
allows us to see how quickly the performance drops; and, in both cases here,
the difference between real authorship and pretend authorship is quite clear.
The point of this section has been to show how line plots and facet grids

can be used to visualize models over time, in this case over cycles of feature
pruning. This method measures the degree to which a classifier depends on
only a few features. This is another way to validate a model, adding another
piece of evidence that a model is making meaningful predictions. In the lab
for this section we use the text_analytics package to carry out the unmasking
analysis.25

4.4 Comparing Word Embeddings Using Heat Maps
Because of variation from dialects and registers, we expect that large corpora
will contain diverging patterns. For example, we have worked with texts from
1931 to 2016 from both lead paragraphs in The New York Times and speeches
in the US congress. These are different registers and they potentially represent
different populations of speakers as well. As a result, we do not expect that the
corpora will contain the same linguistic patterns. Following from that, we do
not expect that the word embeddings from both corpora will provide exactly
the same semantic relationships.
We previously used distance measures like cosine and Euclidean distance

to compare individual words and individual documents. Another way to vis-
ualize the relationship between words, as in Figure 14, is to reduce our
high-dimensional word embeddings to two dimensions (x and y) using principal
components analysis or PCA. This is a common method that allows us to create
a scatterplot to show how words are distributed around this reduced semantic
space. But, from a linguistic perspective, how do we know that a particular

25 Lab 4.3 –> https://doi.org/10.24433/CO.3402613.v1

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

72 Corpus Linguistics

security

military

tax

public

Word Embedding Space: NYT

foreign

national
law

american
war

PC1

P
C

2

energy

Word Embedding Space: Congress

tax
energy

security
foreign

military

american

law

war

public
national

PC1

P
C

2

Figure 14 Visualizing word embeddings from news articles and speeches

configuration is good or bad? As we see in the labs, it is quite difficult to com-
pare multiple different corpora using this method while maintaining our goal
of reproducibility and falsifiability.
Let’s contrast the same set of words in both of these corpora. The corpora rep-

resent formal registers from the same period of American history. And yet we
see some striking differences. In the congressional corpus, military and amer-
ican are quite close; but in the news corpus they are quite distant. On the other
hand, in the news corpus the words energy and public are quite close and, thus,
quite similar. But in the congressional corpus these words are quite distant. In
fact, energy is nearest to tax. The point here is that this kind of visualization
seems like it is telling us about vector semantics. But the visualization is very
different across these two corpora (the labs consider several more as well) and
we only have our intuitions to tell us how different the overall embeddings
actually are. So let’s find a more reproducible method.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 73

Instead we will use the Jaccard similarity to measure the overlap of two
sets of embeddings. This is a measure of set overlap: How similar are two
independent sets of words? We choose 200 words that are frequent in 5 dif-
ferent corpora: news articles, congressional speeches, tweets and web pages,
nineteenth-century books, and hotel reviews. For each word, we collect the five
most similar words according to the embeddings, as calculated using cosine
similarity. This gives us 200 sets of 5 words for each corpus.

J(A,B) = |A ∩ B|
|A ∪ B| (4.1)

The Jaccard similarity, shown above as J, is the ratio of the intersection of
the two sets to the union of the two sets. In this case, the two sets A and B are
the top five most similar words for each target word in each set of embeddings.
When this value is low, there is little overlap between the embeddings in terms
of their predicted most similar words. A low overlap could result from differ-
ent vocabularies: For instance, if a word does not occur in the congressional
speeches corpus, it will never be a member of the set of most similar words. Or
it could result from the embeddings finding different patterns of similarity, in
essence producing a different vector space for describing the same words.
We visualize the relationship between embeddings from the five corpora

in Figure 15. The most similar embeddings are news articles and congres-
sional speeches (both representing the same time period). The least similar
are nineteenth-century books and hotel reviews. This reflects our expecta-
tion that differences in register and population (here caused by time) will
produce different linguistic patterns. Because word embeddings are based on

Hotels

Hotels

0.10

0.12

0.14

0.16

0.18

Digital

Digital

Books

Books

Congress

Congress

NYT

NYT

Figure 15 Comparing word embeddings using Jaccard similarity

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

74 Corpus Linguistics

patterns observed in a corpus, these variations between corpora have a signifi-
cant impact on the final representations. Such differences do not imply that the
embeddings do not carry meaningful information. But they do imply that there
is not a single vector space for a language, and certainly not a single vector
space for all human languages.
The basic finding here is that distributional representations of word meaning

can vary significantly across corpora. One reason for this variation is var-
iation in the corpora themselves. Another reason, mentioned above, is that
word2vec approximates methods that are based on a matrix of association val-
ues. This approximation is more efficient but less stable. This relatively low
level of agreement between embeddings is perfectly acceptable unless we want
to interpret the embeddings as a universal meaning representation that some-
how generalizes beyond the corpus that it describes. We must be careful about
the generalizations that we draw about a language or all languages when using
techniques like this. The lab for this section takes a deeper look at comparing
word embeddings across these five sets of corpora.26

4.5 Following Linguistic Diversity using Choropleth Maps
In this section we explore the use of choropleth maps, drawing on data from
tweets and web pages.What can these sources of language data tell us about the
linguistic diversity of particular countries? This is another application of corpus
analysis to a nonlinguistic question, or at least a question that falls outside of
traditional linguistic analysis. The goal is to measure a proxy or indicator, using
language data, for a socioeconomic quantity. First, we need to develop a text-
based measure to capture the language that each sample represents. Second, we
need to visualize the distribution of languages given a set of predicted language
labels. In order to visualize this information we will use a map instead of a
traditional figure.
First, we rely on a classifier to assign language labels to individual tweets and

web pages in order to know exactly what languages we are observing. We use
a feed-forward network for this purpose, a model that identifies a total of 464
languages (Dunn, 2020). This model is rather similar to what we have seen in
Section 2: using frequency vectors for character n-gramswithin a text classifier.
But here the goal is to predict language labels rather than to predict a dialect or
a part of speech.27

Given a classifier for predicting the language of each sample, we map lan-
guages by country using tweets (a total of 17 billion words) and web pages

26 Lab 4.4 –> https://doi.org/10.24433/CO.3402613.v1
27 https://github.com/jonathandunn/idNet

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://github.com/jonathandunn/idNet
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 75

Figure 16 Number of words per country, corpus of tweets

(a total of 400 billion words). This gives us an estimate of the distribution
of languages over countries from a digital perspective. The map in Figure 16
shows the distribution of the corpus of tweets by number of words per country.
Clearly, some parts of the world are better represented than others. For exam-
ple, North America andWestern Europe havemore data thanmost of Africa and
Southeast Asia. This map is useful on its own, in the sense that current compu-
tational methods rely on corpora like this which are skewed toward some parts
of the world’s population.
The question, then, is to find a single measure for how many different lan-

guages are being used in a particular country, without being specific as to which
languages those are. There is a lot of data per country, so we cannot simply
count the number of languages which appear. Instead, we use the Herfindahl–
Hirschman Index or HHI (Dunn, Coupe, & Adams, 2020). As shown below, this
is the sum of the square of the share of each language. For example, if English
accounts for 60 percent of the data from a country, Spanish accounts for 30
percent, and French accounts for 10 percent, that gives us: (0.6)2 + (0.3)2+
(0.1)2 = 0.36 + 0.09 + 0.01 = 0.46. Higher values indicate a larger monopoly,
in which a few languages account for much of the digital data. This is calculated
for each language (Ln) in a country, although the influence of very infrequent
languages becomes very small. This is helpful given the possibility of a small
number of incorrect labels in the data set.

HHI = [Share(L1)2 + Share(L2)2 + Share(L3)2 . . . Share(Ln)2] (4.2)

We see linguistic diversity by country for tweets in Figure 17. In digital con-
texts, English is more pervasive than in nondigital contexts. Thus, countries
which are more monolingual in non-English languages (like France or Spain)
will have lower HHI values, appearing more diverse because there is a signifi-
cant presence of English in this digital context. Themost monolingual countries
are the USA, Brazil, and Argentina. The most multilingual countries are India

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

76 Corpus Linguistics

Figure 17 Linguistic diversity (HHI) by country, tweet corpus

Figure 18 Linguistic diversity (HHI) by country, web corpus

and a large number of the countries in South Asia, as well as most countries in
Africa. Because the HHI looks at the relative share of languages in each country,
it is not influenced by variations in the size of the corpus for each country.
The corpus of tweets provides one source of observations, but of course a

platform like this is inconsistent because it competes with different platforms
across different countries. In Figure 18 we contrast this with the corpus drawn
from web data. We see the same general trends; here, however, Brazil is much
more multilingual while India is more monolingual. While either source of data
is somewhat biased, it is often possible to triangulate across different sources
like this to correct that bias (Dunn, 2021).
The point of this section has been that we can use a text classifier to predict

the language for samples from digital corpora. These labels, when combined
with metadata for space and time, can provide a socioeconomic measure of lin-
guistic diversity, at least for digital contexts. Because this kind of information
is likely to be structured geographically, we visualize it using maps. The lab
for this section shows in more detail how to map linguistic phenomena.28

28 Lab 4.5 –> https://doi.org/10.24433/CO.3402613.v1

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 77

4.6 Ethics: Equal Access
We know that speakers of different languages from different geographic areas
do not have the same degree of access to digital technologies. We have seen
throughout this Element that we can learn a great deal about language and
about populations using computational linguistic analysis. But in order for this
analysis to be possible, we need to have large amounts of digital data. Unfortu-
nately, most languages simply do not have corpora of this size available. And
that means the people who speak those languages are not represented by the
increasingly important computational models that depend on large corpora.
Figure 19 shows the countries of the world by their representation in the

Corpus of Global Language Use (Dunn, 2020). Hosted at earthLings.io,29 this
is one of the largest corpora in the world. Here we are looking at the amount
of data per country in number of words. There are many factors involved in
the production of digital data, but the main ones are (i) population, (ii) internet
access, and (iii) GDP.Wealthy countries producemore language data per person
in digital contexts (Dunn & Adams, 2019).
Traditional methods of linguistic analysis are not impacted by this kind of

bias in the production of digital data, although they continue to show a strong
bias toward languages from wealthy Western countries. But the methods that
we have learned about in this Element, because they take advantage of large
corpora, are particularly subject to population-based bias. This is a perverse
side effect of taking advantage of large-scale computational analysis: It is only
possible on well-represented majority languages.
Only around fifty languages have public corpora available that can support

the kinds of methods we have covered in this Element. All other languages
are, in effect, low-resource languages. Table 32 shows the languages in the

Figure 19 Corpus size by country, Corpus of Global Language Use

29 https://www.earthLings.io

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.earthLings.io
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

78 Corpus Linguistics

Table 32 Similarity of balanced and unbalanced word embeddings

Code Language Jaccard Code Language Jaccard

ara Arabic 0.1318 bul Bulgarian 0.1713
cat Catalan 0.1525 ces Czech 0.2005
dan Danish 0.1596 deu German 0.2140
ell Greek 0.1131 eng Eng. (Inner) 0.1873
eng Engl. (Outer) 0.2139 eng Eng. (Expand) 0.2169
est Estonian 0.1883 fas Farsi 0.2092
fin Finnish 0.2020 fra French 0.1670
gle Irish 0.0880 hin Hindi 0.0285
hun Hungarian 0.2257 ind Indonesian 0.2252
ita Italian 0.1726 jpn Japanese 0.0962
kaz Kazakh 0.1442 kor Korean 0.0717
lav Latvian 0.1687 nld Dutch 0.2200
pol Polish 0.1835 por Portuguese 0.1876
ron Romanian 0.1902 rus Russian 0.1508
slk Slovak 0.1684 slv Slovenian 0.1602
spa Spanish 0.1908 swe Swedish 0.1733
tur Turkish 0.1674 ukr Ukrainian 0.1714
vie Vietnamese 0.0254 zho Chinese 0.0447

GeoWAC project (Dunn & Adams, 2020). This project has the goal of mak-
ing gigaword corpora (containing at least a billion words) available in as many
languages as possible, while accurately sampling the users of each language.
In other words, the GeoWAC corpus of English includes samples from Nige-
ria and New Zealand instead of just the USA and UK. On the one hand,
projects like this make it possible for computational linguistic analysis to
provide equal access for diverse populations. But, on the other hand, this is
still only a first attempt to mitigate this perverse side effect of computational
methods.
Does it make a difference for a language like English to be represented by

only American speakers or a language like Spanish by only European speak-
ers? Although the population of users of these languages are spread around
the world, traditional corpora are largely restricted to so-called inner-circle
varieties. The table shows the agreement between word embeddings trained
on geographically biased data (drawn exclusively from inner-circle countries)
and unbiased data (drawn from many countries using population-based sam-
pling). There is a fairly low agreement overall using the same Jaccard similarity
method we saw in Section 4.4.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Natural Language Processing for Corpus Linguistics 79

We are comparing embeddings from two sets of gigaword corpora: one that
is balanced to avoid population-bias and one that is not balanced. The wide
variation that we observe means that our vector semantics for each language
actually represents only a narrow population of users of that language, ignoring
much of the world. If our goal is to model the vector semantics of American
English, this is not a problem. But as soon as we try to generalize to the vec-
tor semantics of English or to a language-universal semantics, these findings
become quite problematic.
The purpose of this section is not to discredit the endeavour of computa-

tional linguistic analysis. After all, this remains a powerful tool for under-
taking linguistic analysis on a large scale. But it is important that we do not
overlook the weaknesses that remain, both ethical and theoretical. Once we
have identified those problems (implicit bias, discrimination, lack of equal
access), we can work to correct them. That is exactly the goal of projects like
GeoWAC.

5 Conclusions
This Element has shown how computational methods from natural language
processing can expand and scale up corpus linguistics by helping us to solve a
wide range of categorization and comparison problems. At the same time, we
have taken a closer look at the theoretical and ethical issues that arise when we
use these computational methods. It is important that we consider the technical
aspects, the linguistic aspects, and the ethical aspects together.
For categorization problems, we have seen howwe can convert the linguistic

signal into a vector representation that highlights semantics (content), pragmat-
ics (sentiment), style (syntactic choices across a document), and context (local
syntactic relationships). Once we have converted the corpus data into a shared
vector space, we can make highly accurate predictions about authorship and
dialect membership, about parts of speech, about lexical content, and about pos-
itive or negative sentiment. This wide range of applications is made possible
by a powerful model, a text classifier.
At the same time, many linguistic questions do not involve discrete cate-

gories. We have seen how comparison problems require a continuous measure
of similarity. This allows us to study relationships between pairs of items, like
words or documents. At the level of corpora, we have looked at relationships
between registers. At the level of documents, we have looked at relationships
based on syntactic, semantic, and pragmatic features. At the level of words, we
have looked at relationships in distribution using both associationmeasures and
word embeddings. And, finally, we have seen how we can construct a network

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

80 Corpus Linguistics

of pairwise relationships by using clustering algorithms to put the most similar
pairs into a single categorical group.
Is there always a clear distinction between categorization and comparison

problems? It turns out that there is a good deal of interaction between these
two classes of methods. We have seen that word embeddings are a method of
approximating an association matrix using logistic regression. The basic idea
is to train a classifier to predict which words occur together, a task we are not
directly focused on, in order to extract feature weights that work well for other
tasks. A very popular method is to then use word embeddings as the first layer
in a neural network. In other words, we first train an unsupervised model on a
very large corpus and then we take that unsupervised model as a starting point
for a supervised categorization task.
How does this work? The details are shown in the text_analytics package in

the function called mlp_embeddings. We essentially combine a word embed-
ding (Section 3.5) with a positional vector (Section 2.4).We then represent each
document using concatenated word embeddings. So, imagine the first word in
the document is cats and the next words are sit and on and mats. We take the
100-dimensional embedding for cats and add the 100-dimensional embedding
for sit and add the 100-dimensional embedding for on, and so on.
This creates a vector of positionally encoded word embeddings. For our bag-

of-words vectors, we often use 10,000 or more features to describe a document.
And, in this case, the representation for a 100-word document again contains a
vector of 10,000 features (100words * 100 dimensions for eachword). A vector
like this is given to a feed-forward neural network, which is able to slowly
update those embeddings until they perform well on a specific classification
task.
The point here is that we have a lot of tools available for computational lin-

guistic analysis. And, importantly, we can mix and match those tools. We often
reuse a few important techniques, like co-occurrence probabilities or feature
weights, over and over again in different contexts.
The interactive code notebooks have shown how to reproduce all of the

examples in this Element. You can go further into the details by using the stand-
alone Python package30 that we used to support those notebooks. This package
shows how to implement all of these methods using best practices. It is a good
place to start for those intending to implement these methods on their own
corpora for analysis in their own computational environment.

30 https://github.com/jonathandunn/text_analytics

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://github.com/jonathandunn/text_analytics
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

References
Biber, D. (2012). Register as a Predictor of Linguistic Variation. Corpus
Linguistics and Linguistic Theory, 8(1), 9–37.

Church, K., &Hanks, P. (1990).WordAssociation Norms,Mutual Information,
and Lexicography. Computational Linguistics, 16(1), 22–29.

Diermeier, D., Godbout, J., Yu, B., & Kaufmann, S. (2011). Language
and Ideology in Congress. British Journal of Political Science, 42(1),
31–55.

Dunn, J. (2013a). Evaluating the Premises and Results of Four Metaphor
Identification Systems. In A. Gelbukh (ed.), Proceedings of the Confer-
ence on Intelligent Text Processing and Computational Linguistics, vol. 1
(pp. 471–486). Heidelberg: Springer.

Dunn, J. (2013). How Linguistic Structure Influences and Helps to Predict
Metaphoric Meaning. Cognitive Linguistics, 24(1), 33–66.

Dunn, J. (2014). Measuring Metaphoricity. In K. Toutanova & H. Wu (eds.),
Proceedings of the Annual Meeting of the Association for Computational
Linguistics (pp. 745–751). Stroudsburg, PA: Association for Computational
Linguistics.

Dunn, J. (2015). Modeling Abstractness and Metaphoricity. Metaphor &
Symbol, 30, 259–289.

Dunn, J. (2017). Computational Learning of Construction Grammars.
Language & Cognition, 9(2), 254–292.

Dunn, J. (2018a). Finding Variants for Construction-Based Dialectometry: A
Corpus-Based Approach to Regional CxGs. Cognitive Linguistics, 29(2),
275–311.

Dunn, J. (2018b). Modeling the Complexity and Descriptive Adequacy of
Construction Grammars. In G. Jarosz, B. O’Connor, & J. Pater (eds.),
Proceedings of the Society for Computation in Linguistics (pp. 81–90).
Stroudsburg, PA: Association for Computational Linguistics.

Dunn, J. (2018c). Multi-Unit Directional Measures of Association Moving
Beyond Pairs of Words. International Journal of Corpus Linguistics, 23(2),
183–215.

Dunn, J. (2019a). Frequency vs. Association for Constraint Selection in Usage-
BasedConstructionGrammar. In E. Chersoni, C. Jacobs, A. Lenci, T. Linzen,
L. Prévot, & E. Santus (eds.), Proceedings of the Workshop on Cognitive
Modeling and Computational Linguistics (pp. 117–128). Stroudsburg, PA:
Association: for Computational Linguistics.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

82 References

Dunn, J. (2019b). Global Syntactic Variation in Seven Languages: Towards
a Computational Dialectology. Frontiers in Artificial Intelligence, Collec-
tion on Computational Sociolinguistics, 2. DOI: https://doi.org/10.3389/
frai.2019.00015.

Dunn, J. (2019c). Modeling Global Syntactic Variation in English Using Dia-
lect Classification. In M. Zampieri, P. Nakov, S. Malmasi, N. Ljubešić,
J. Tiedemann, & A. Ali (eds.), Proceedings of NAACL 2019 Sixth Work-
shop on NLP for Similar Languages, Varieties and Dialects (pp. 42–53).
Stroudsburg, PA: Association for Computational Linguistics.

Dunn, J. (2020). Mapping Languages: The Corpus of Global Lan-
guage Use. Language Resources and Evaluation, 54, 999–1018. DOI:
https://doi.org/10.1007/s10579-020-09489-2.

Dunn, J. (2021). Representations of Language Varieties Are Reliable Given
Corpus Similarity Measures. In M. Zampieri, P. Nakov, N. Ljubešić,
J. Tiedemann, Y. Scherrer, & T. Jahuiainen (Eds.), Proceedings of the
EighthWorkshop on NLP for Similar Languages, Varieties, and Dialects (pp.
28–38). Stroudsburg, PA: Association for Computational Linguistics.

Dunn, J., & Adams, B. (2019). Mapping Languages and Demographics with
Georeferenced Corpora. In B. Adams, M. de Roiste, M. Gahegan, C. Hulbe,
D. O’Sullivan, K. Sila-Nowicka, P. Whigham, &M.Wilson (eds.), Proceed-
ings of Geocomputation 2019 (16 pp.). Auckland: N.p.

Dunn, J., & Adams, B. (2020, May). Geographically-Balanced Gigaword Cor-
pora for 50 Language Varieties. In N. Calzolari, F. Béchet, P. Blache,
K. Choukri, C. Cieri, T. Declerck, S. Goggi, H. Isahara, B. Maegaard,
J. Mariani, H. Mazo, A. Moreno, J. Odijk, & S. Piperidis (eds.), Pro-
ceedings of the 12th Language Resources and Evaluation Conference
(pp. 2528–2536). Marseilles, European Language Resources Association.

Dunn, J., Argamon, S., Rasooli, A., & Kumar, G. (2016). Profile-Based
Authorship Analysis. Literary and Linguistic Computing, 31(4), 689–710.

Dunn, J., Coupe, T., & Adams, B. (2020, Nov.). Measuring Linguistic Diver-
sity During COVID-19. In D. Bamman, D. Hovy, D. Jurgens, B. O’Connor,
& S. Volkova (eds.), Proceedings of the Fourth Workshop on Natural Lan-
guage Processing and Computational Social Science (pp. 1–10). Online:
Association for Computational Linguistics.

Dunn, J., & Nini, A. (2021). Production vs Perception: The Role of Individ-
uality in Usage-Based Grammar Induction. In E. Chersoni, N. Hollenstein,
C. Jacobs, Y. Oseki, L. Prévot, & E. Santus (Eds.), Proceedings of the Work-
shop on Cognitive Modeling and Computational Linguistics (pp. 149–159).
Stroudsburg, PA: Association for Computational Linguistics.

Dunn, J., & Tayyar Madabushi, H. (2021). Learned Construction Grammars
Converge Across Registers Given Increased Exposure. In A. Bisazza &

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.3389/frai.2019.00015
https://doi.org/10.3389/frai.2019.00015
https://doi.org/10.1007/s10579-020-09489-2
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

References 83

O. Abend (Eds.), Proceedings of the Conference on Computational Nat-
ural Language Learning (pp. 471–486). Stroudsburg, PA: Association for
Computational Linguistics.

Ellis, N. (2007). Language Acquisition as Rational Contingency Learning.
Applied Linguistics, 27(1), 1–24.

Francis, W., & Kucera, H. (1967). Computational Analysis of Present-Day
American English. Providence, RI: Brown University Press.

Gentzkow, M., Shapiro, J., & Taddy, M. (2018). Congressional Record for the
43rd–114th Congresses: Parsed Speeches and Phrase Counts (Tech. Rep.).
Palo Alto, CA: Stanford Libraries. https://data.stanford.edu/congress_text

Gerlach,M., & Font-Clos, F. (2020). A Standardized Project Gutenberg Corpus
for Statistical Analysis of Natural Language and Quantitative Linguistics.
Entropy, 22(1), 126. DOI: https://doi.org/10.3390/e22010126

Goldberg, Y. (2017). Neural Network Methods in Natural Language Process-
ing.Williston, VT: Morgan & Claypool Publishers.

Gries, S. T. (2013). 50-Something Years of Work on Collocations: What Is
or Should Be Next. International Journal of Corpus Linguistics, 18(1),
137–165.

Hellrich, J., Kampe, B., & Hahn, U. (2019). The Influence of Down-Sampling
Strategies on SVD Word Embedding Stability. In A. Rogers, A. Drozd,
A. Rumshisky, & Y. Goldberg (Eds.), Proceedings of the 3rd Workshop on
Evaluating Vector Space Representations for NLP (pp. 18–26). Stroudburg,
PA: Association for Computational Linguistics.

Kilgarriff, A. (2001). Comparing Corpora. International Journal of Corpus
Linguistics, 6(1), 97–133.

Koppel, M., Schler, J., & Bonchek-Dokow, E. (2007). Measuring Differenti-
ability: Unmasking Pseudonymous Authors. Journal of Machine Learning
Research, 8, 1261–1276.

Landauer, T., Foltz, P., & Laham, D. (1998). Introduction to Latent Semantic
Analysis. Discourse Processes, 25(2–3), 259–284.

Levy, O., Goldberg, Y., & Dagan, I. (2015, May). Improving Distributional
Similarity with Lessons Learned from Word Embeddings. Transactions of
the Association for Computational Linguistics, 3, 211–225.

Li, J. (2012).Hotel Reviews Dataset (Tech. Rep.). Carnegie Mellon University.
www.cs.cmu.edu/~jiweil/html/hotel-review.html

McKenzie, G., & Adams, B. (2018). A Data-Driven Approach to Explor-
ing Similarities of Tourist Attractions through Online Reviews. Journal of
Location Based Services, 12(2), 94–118.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distrib-
uted Representations of Words and Phrases and Their Compositionality. In

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://data.stanford.edu/congress{_}text
https://doi.org/10.3390/e22010126
www.cs.cmu.edu/{~}jiweil/html/hotel-review.html
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

84 References

C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger
(Eds.),Proceedings of the 26th International Conference on Neural Informa-
tion Processing Systems–Volume 2 (pp. 3111–3119). Red Hook, NY: Curran
Associates Inc.

Mueller, A., Nicolai, G., Petrou-Zeniou, P., Talmina, N., & Linzen, T.
(2020). Cross-Linguistic Syntactic Evaluation of Word Prediction Models.
In D. Jurafsky, J. Chai, N. Schluter, & J. Tetreault (Eds.), Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics (pp.
5523–5539). Stroudsburg, PA: Association for Computational Linguistics.

Parsons, A. (2019). NY Times Article Lead Paragraphs 1851–2017
(Tech. Rep.). Kaggle. https://www.kaggle.com/parsonsandrew1/nytimes-
article-lead-paragraphs-18512017

Pennebaker, J. (2011). The Secret Life of Pronouns: What OurWords Say About
Us. New York: Bloomsbury Publishing.

Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global Vectors
for Word Representation. In A. Moschitti, B. Pang, & W. Daelemans
(eds.), Empirical Methods in Natural Language Processing (EMNLP)
(pp. 1532–1543). Stroudsburg, PA: Association for Computational
Linguistics.

Petrov, S., Das, D., & McDonald, R. (2012). A Universal Part-of-Speech
Tagset. In N. Calzolari, K. Choukri, T. Declerck, M. Uğur Doğan,
B. Maegaard, J. Mariani, A. Moreno, J. Odijk, & S. Piperidis (eds.), Pro-
ceedings of the Eighth Conference on Language Resources and Evaluation
(pp. 2089–2096). Paris: European Language Resources Association.

Taylor, J. (2004). Linguistic Categorization (3rded.). Oxford: Oxford
University Press.

Wang, H., Lu, Y., & Zhai, C. (2011). Latent Aspect Rating Analysis Without
Aspect Keyword Supervision. In Proceedings of the 17th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (pp. 618–626). New
York: Association for Computing Machinery.

Zeman, D. et al. (2021). Universal Dependencies 2.8.1 (Tech. Rep.).
LINDAT/CLARIAH-CZ Digital Library at the Institute of Formal and
Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles
University. http://hdl.handle.net/11234/1-3687

Zhao, J., Zhou, Y., Li, Z., Wang, W., & Chang, K.-W. (2018, October–
November). Learning Gender-Neutral Word Embeddings. In E. Riloff,
D. Chiang, J. Hockenmaier, & J. Tsujii (eds.), Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing
(pp. 4847–4853). Brussels: Association for Computational Linguistics.

Zuboff, S. (2019). The Age of Surveillance Capitalism: The Fight for a Human
Future at the New Frontier of Power. New York: PublicAffairs.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.kaggle.com/parsonsandrew1/nytimes-article-lead-paragraphs-18512017
https://www.kaggle.com/parsonsandrew1/nytimes-article-lead-paragraphs-18512017
http://hdl.handle.net/11234/1-3687
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Acknowledgments

This Element has benefited tremendously from contributions from colleagues
at the University of Canterbury. The case-study approach would not have been
possible without previous collaborations with Jeanette King, Tom Coupé, and
Girish Prayag. The presentationwould have beenmuchmore complicatedwith-
out the coaching of Kaushik Kumar, Michael Philpott, and Rob Stowell. The
integration of digital resources like code notebooks has been improved by feed-
back from Carmen Weaver and Richard Davies. The text_analytics package
has benefited greatly from generalizations added by Damian Sastre. The exer-
cises in corpus similarity would not have been possible without the work of
Haipeng Li.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Data Availability Statement

The Python code and corpus data accompanying this Element can be run
interactively online via Code Ocean. The link can be found below:

https://doi.org/10.24433/CO.3402613.v1

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://doi.org/10.24433/CO.3402613.v1
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Corpus Linguistics

Susan Hunston
University of Birmingham

Professor of English Language at the University of Birmingham, UK. She has been
involved in Corpus Linguistics for many years and has written extensively on corpora,

discourse, and the lexis-grammar interface. She is probably best known as the author of
Corpora in Applied Linguistics (2002, Cambridge University Press). Susan is currently

co-editor, with Carol Chapelle, of the Cambridge Applied Linguistics series.

Advisory Board
Professor Paul Baker, Lancaster University

Professor Jesse Egbert, Northern Arizona University
Professor Gaetanelle Gilquin, Université Catholique de Louvain

About the Series
Corpus Linguistics has grown to become part of the mainstream of Linguistics and
Applied Linguistics, as well as being used as an adjunct to other forms of discourse

analysis in a variety of fields. It continues to become increasingly complex, both in terms
of the methods it uses and in relation to the theoretical concepts it engages with. The
Cambridge Elements in Corpus Linguistics series has been designed to meet the needs
of both students and researchers who need to keep up with this changing field. The
series includes introductions to the main topic areas by experts in the field as well as

accounts of the latest ideas and developments by leading researchers.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

Corpus Linguistics

Elements in the Series
Multimodal News Analysis across Cultures

Helen Caple, Changpeng Huan and Monika Bednarek
Doing Linguistics with a Corpus: Methodological Considerations for the Everyday

User
Jesse Egbert, Tove Larsson and Douglas Biber
Citations in Interdisciplinary Research Articles

Natalia Muguiro
Conducting Sentiment Analysis

Lei Lei and Dilin Liu
Natural Language Processing for Corpus Linguistics

Jonathan Dunn

A full series listing is available at: www.cambridge.org/corpuslinguistics

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009070447
Downloaded from https://www.cambridge.org/core. IP address: 188.26.197.232, on 09 Mar 2022 at 22:17:33, subject to the Cambridge Core terms

http://www.cambridge.org/corpuslinguistics
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009070447
https://www.cambridge.org/core

	Cover
	Tilte Page
	Coypright Page
	Natural Language Processing for Corpus Linguistics
	Contents
	Accessing the Code Notebooks
	1 Computational Linguistic Analysis
	1.1 Scaling Up Corpus Linguistics
	1.2 The Case Studies
	1.3 Categorization Problems
	1.4 Comparison Problems
	1.5 Language in Vector Space
	1.6 Ethics: Data Rights

	2 Text Classification
	2.1 Evaluating Classifiers
	2.2 Representing Content
	2.3 Representing Structure
	2.4 Representing Context
	2.5 Representing Sentiment
	2.6 Logistic Regression
	2.7 Feed-Forward Networks
	2.8 Ethics: Implicit Bias

	3 Text Similarity
	3.1 Categorization and Cognition
	3.2 Measuring Corpus Similarity
	3.3 Measuring Document Similarity
	3.4 Measuring Word Similarity Using Association
	3.5 Measuring Word Similarity in Vector Space
	3.6 Clustering by Similarity
	3.7 Ethics: Model Discrimination

	4 Validation and Visualization
	4.1 Reporting Results for Political Speech Prediction
	4.2 Ensuring Validity Using Box Plots
	4.3 Unmasking Pseudonymous Authors Using Line Plots
	4.4 Comparing Word Embeddings Using Heat Maps
	4.5 Following Linguistic Diversity using Choropleth Maps
	4.6 Ethics: Equal Access

	5 Conclusions
	References
	Acknowledgments
	Data Availability Statement

